Evaluation of Synthetic Natural Gas Production From Renewably Generated Hydrogen and Carbon Dioxide

2014 ◽  
Author(s):  
W. L. Becker ◽  
R. J. Braun ◽  
M. Penev

The natural gas distribution infrastructure is well developed in many countries, enabling the fuel to be transported long distances via pipelines and easily delivered throughout cities. Using the existing pipeline to transport renewably generated synthetic natural gas (SNG) can leverage the value of the product. While the price of natural gas is near record lows in the United States, many other countries are working to develop SNG as an alternative fuel for transportation markets, especially in Europe and for island nations. This study presents an SNG plant design and evaluates its performance for producing SNG by reacting renewably generated hydrogen with carbon dioxide. The carbon dioxide feedstock is assumed to be captured and scrubbed from an existing coal fired power plant at the city-gate, where the SNG plant is co-located. Historically, methanation has been a common practice for eliminating carbon monoxide and carbon dioxide in various chemical processes such as ammonia production and natural gas purification; for these processes, only small amounts (1–3% molar basis) of carbon oxides need to be converted to methane. A “bulk” methanation process is unique due to the high concentration of carbon oxides and hydrogen. In addition, the carbon dioxide is the only carbon source, and the reaction characteristics of carbon dioxide are much different than carbon monoxide. Thermodynamic and kinetic considerations of the methanation reaction are explored to model and simulate a system of reactors for the conversion of hydrogen and carbon dioxide to SNG. Multiple reactor stages are used to increase temperature control of the reactor and drain water to promote the forward direction of the methanation reaction. Heat recuperation and recovery using organic Rankine cycle units for electricity generation utilizes the heat produced from the methanation reaction. Bulk recycle is used to increase the overall reactant conversion while allowing a satisfactorily high methane content SNG product. A hydrogen membrane separates hydrogen for recycle to increase the Wobbe index of the product SNG by increasing the methane content to nearly 93% by volume. The product SNG has a Wobbe index of 47.5 MJ/m3 which is acceptable for natural gas pipeline transport and end-use appliances in the existing infrastructure. The overall plant efficiency is shown to be 78.1% HHV and 83.2% LHV. The 2nd Law efficiency for the SNG production plant is 84.1%.

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
William L. Becker ◽  
Michael Penev ◽  
Robert J. Braun

Power-to-gas to energy systems are of increasing interest for low carbon fuels production and as a low-cost grid-balancing solution for renewables penetration. However, such gas generation systems are typically focused on hydrogen production, which has compatibility issues with the existing natural gas pipeline infrastructures. This study presents a power-to-synthetic natural gas (SNG) plant design and a techno-economic analysis of its performance for producing SNG by reacting renewably generated hydrogen from low-temperature electrolysis with captured carbon dioxide. The study presents a “bulk” methanation process that is unique due to the high concentration of carbon oxides and hydrogen. Carbon dioxide, as the only carbon feedstock, has much different reaction characteristics than carbon monoxide. Thermodynamic and kinetic considerations of the methanation reaction are explored to design a system of multistaged reactors for the conversion of hydrogen and carbon dioxide to SNG. Heat recuperation from the methanation reaction is accomplished using organic Rankine cycle (ORC) units to generate electricity. The product SNG has a Wobbe index of 47.5 MJ/m3 and the overall plant efficiency (H2/CO2 to SNG) is shown to be 78.1% LHV (83.2% HHV). The nominal production cost for SNG is estimated at 132 $/MWh (38.8 $/MMBTU) with 3 $/kg hydrogen and a 65% capacity factor. At U.S. DOE target hydrogen production costs (2.2 $/kg), SNG cost is estimated to be as low as 97.6 $/MWh (28.6 $/MMBtu or 1.46 $/kgSNG).


Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


1934 ◽  
Vol 10 (6) ◽  
pp. 743-758 ◽  
Author(s):  
E. H. Boomer ◽  
H. E. Morris

Numerous experiments have been carried out on the decomposition of alcohol, alcohol and water, and alcohol and carbon dioxide mixtures over poly-component catalysts at temperatures up to 500 °C. Quantitative data on the gaseous and the liquid products were obtained. The properties of the poly-component catalysts, as evidenced by the simple primary and secondary reactions, have been shown to be qualitatively those of the single components.Methane can be produced in one or more of several secondary reactions, namely, the decomposition of acetaldehyde, the hydrogenation of carbon oxides and the decomposition of ethylene. Ethane can be produced in one or both of two reactions consisting of auto-oxidation and reduction of the alcohol, or the secondary hydrogenation of ethylene, confirming previous work. Carbon dioxide, in most cases, is formed as a result of the water-gas reaction and the decomposition of carbon monoxide. In other cases its origin is obscure. The results of certain experiments in which carbon dioxide and hydrogen were the major constituents of the off-gas cannot be explained in the same way. Reactions involving ketene decomposition and polymerization, and hydration of alcohol, have been suggested as possible explanations.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5060
Author(s):  
Szymon Kuczyński ◽  
Mariusz Łaciak ◽  
Adam Szurlej ◽  
Tomasz Włodek

The one of main quality requirements of natural gas as an engine fuel is the methane number (MN). This parameter indicates the fuel’s capability to avoid knocking in the engine. A higher MN value indicates a better natural gas quality for gas engines. Natural gas with higher methane content tends to have higher MN value. This study presents analysis of deviation of liquefied natural gas (LNG) composition and its impact on LNG quality as an engine fuel. The analysis of higher hydrocarbons and nitrogen content impact on LNG parameters was considered for several samples of LNG compositions. Most engine manufacturers want to set a new, lower limit value for methane number at 80. This fact causes significant restrictions on the range of variability in the composition of liquefied natural gas. The goal of this study was to determine the combination of the limit content of individual components in liquefied natural gas to achieve the strict methane number criterion (MN > 80). To fulfill this criterion, the methane content in LNG would have to exceed 93.7%mol, and a significant part of the LNG available on the market does not meet these requirements. The analysis also indicated that the methane number cannot be the only qualitative criterion, as its variability depends strongly on the LNG composition. To determine the applicability of LNG as an engine fuel, the simultaneous application of the methane number and Wobbe index criteria was proposed.


Author(s):  
R. R. Baker

AbstractFlue-cured Virginia tobacco has been heated in nitrogen and nitrogen/oxygen mixtures under flow conditions, and the rate of formation of carbon monoxide and carbon dioxide has been determined as a function of temperature, heating rate, and proportion of oxygen in the gas. When the tobacco is heated in nitrogen at heating rates comparable to those in a smouldering cigarette, 27 % of the carbon content of the tobacco is converted to carbon oxides. Both carbon oxides show two distinct formation regions: a low-temperature region (about 100°-450°C), and a high-temperature region (about 550°-900°C). These temperature limits are almost identical to those predicted from studies on the combustion coal of a cigarette burning in air. When tobacco, or the carbonaceous residue remaining after the pyrolysis experiments, is heated in nitrogen / oxygen mixtures, the total amount of carbon converted to carbon monoxide and carbon dioxide is independent of heating rate, but the relative proportions of the two oxides are strongly dependent on heating rate. At the lower heating rate, proportionally less carbon monoxide, and more carbon dioxide, is produced. Under oxidation conditions, about 70 % of both carbon oxides formed in the low-temperature region (100°-450°C) are produced by tobacco decomposition reactions, whereas in the high-temperature region about 10-20 % of the carbon monoxide, and 2-9 % of the carbon dioxide, are produced by tobacco decomposition.


2014 ◽  
Vol 59 (11) ◽  
pp. 3502-3509 ◽  
Author(s):  
Khalik M. Sabil ◽  
Qazi Nasir ◽  
Bezhad Partoon ◽  
Akbar A. Seman

1971 ◽  
Vol 13 (6) ◽  
pp. 369-375 ◽  
Author(s):  
A. Williams

Measurements have been made of the amounts of cold and heat produced by a vortex tube operated with methane containing some carbon dioxide, and with Algerian natural gas, which has a high methane content. The effects of gas supply temperature and pressure have been investigated. The contribution of the Joule–Thomson effect to the total cooling has been calculated and allowed for. Vortex effect cooling decreases with lowering of the supply temperature and probably disappears at the gas liquefaction point. It is dependent on the pressure expansion ratio across the tube. The findings are compared with those of other workers and those predicted by vortex tube theories.


2020 ◽  
Author(s):  
Gheorghe Lazaroiu ◽  
Dana-Alexandra Ciupageanu ◽  
Lucian Mihaescu ◽  
Rodica-Manuela Grigoriu

Conversion technologies able to transform renewable energy sources (RES) based electricity in gaseous fuels, which can be stored over long timeframes, represent a key focus point considering the low carbon society development. Thus, Power-to-Gas technologies emerge as a viable solution to mitigate the variability of RES power generation, enabling spatial and temporal balancing of production vs. demand mismatches. An additional benefit in this context is brought by the decarbonization facilities, employing polluting carbon dioxide (CO2) emissions and RES-based electricity to produce synthetic natural gas with high methane (CH4) concentration. The fuel obtained can be stored or injected in the gas distribution infrastructure, becoming a clean energy vector. This paper investigates the functional parameters of such technologies, aiming to comparatively analyze their suitability for further integration in hybrid and ecofriendly energy systems. Given the stability of CO2 molecule, a catalyst must be used to overcome the methanation reaction kinetics limitations. Therefore, the required conditions (in terms of pressure and temperature) for CO2 methanation reaction unfolding are analyzed first. Further, CO2 conversion rate and CH4 selectivity are investigated in order to provide a detailed comparison of available technologies in the field, addressing moreover the particularities of catalyst preparation processes. It is found that Nickel (Ni) based catalysts are performing well, achieving good performances even at atmospheric pressure and low temperatures. It is remarkable that, within a [300,500]℃ temperature range, Ni-based catalysts enable a CO2 conversion rate over 78% with a CH4 selectivity of up to 100%. Last, integration perspectives and benefits are discussed, highlighting the crucial importance of the results presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document