A Numerical Investigation of Loss Coefficient Variation in Various Incidence Angles in Tandem Blades Cascade

Author(s):  
Arash Soltani Dehkharqani ◽  
Masoud Boroomand ◽  
Hamzeh Eshraghi

There is a severe tendency to reduce weight and increase power of gas turbine. Such a requirement is fulfilled by higher pressure ratio of compressor stages. Employing tandem blades in multi-stage axial flow compressors is a promising methodology to control separation on suction sides of blades and simultaneously implement higher turning angle to achieve higher pressure ratio. The present study takes into account the high flow deflection capabilities of the tandem blades consisting of NACA-65 airfoil with fixed percent pitch and axial overlap at various flow incidence angles. In this regard, a two-dimensional cascade model of tandem blades is constructed in a numerical environment. The inlet flow angle is varied in a wide range and overall loss coefficient and deviation angles are computed. Moreover, the flow phenomena between the blades and performance of both forward and afterward blades are investigated. At the end, the aerodynamic flow coefficient of tandem blades are also computed with equivalent single blades to evaluate the performance of such blades in both design and off-design domain of operations. The results show that tandem blades are quite capable of providing higher deflection with lower loss in a wide range of operation and the base profile can be successfully used in design of axial flow compressor. In comparison to equivalent single blades, tandem blades have less dissipation because the momentum exerted on suction side of tandem blades confines the size of separation zone near trailing edges of blades.

1964 ◽  
Vol 15 (4) ◽  
pp. 328-356 ◽  
Author(s):  
W. T. Howell

SummaryThe following theoretical investigation is concerned with the stability of the flow through a system composed of a multi-stage axial flow compressor followed by a throttle.Such an investigation was carried out by Pearson and Bowmer in 1949. In 1962 Pearson’s work on the analysis of axial flow compressor characteristics, and the accumulation of empirical data regarding factors affecting the surge line, re-awakened interest in the possibility of predicting the surge line of a multi-stage axial flow compressor-throttle system.In this paper the equations governing the stability of flow at any operating point in such a system are obtained by applying Kirchhoff’s laws to the associated electric circuit at that operating point, and the analysis is applied to a wide range of flows of the calculated characteristics of a seven-stage axial flow compressor.A study of the simplest compressor-throttle system is given, in which the equations of motion of the system are derived mechanically and electrically, and the range of validity of the equations and their stability are discussed in order to bring out the relation between the mathematics and physics of the simple system before applying these methods to multi-stage axial flow compressors.For the relatively simple electrical representation used in this paper for an axial compressor of n stages, there are shown to be 2n possible values of p, the transient rotational frequency, and these are determined over a sufficiently wide range of flows on the seven-stage compressor studied.As a result, a region of the compressor characteristic map can be marked out in which all the values of the transient rotational frequency have their real parts less than zero, corresponding to stability of operation, a region where at least one of the values of p is real and positive corresponding to non-oscillatory instability of operation, and an intermediate region where some of the values of the rotational frequency p are complex with positive real part, corresponding to oscillatory instability of operation.It is suggested that the non-oscillatory instability found here is associated with the surge and the line of inception of non-oscillatory instability with the surge line.


1978 ◽  
Vol 20 (2) ◽  
pp. 101-114 ◽  
Author(s):  
I. J. Day ◽  
N.A. Cumpsty

Detailed flow measurements obtained by a new measuring technique are presented for the flow in a stalled axial-flow compressor. Results were obtained from a wide range of compressor builds, including multi-stage and single-stage configurations of various design flow rates and degrees of reaction. Instantaneous recordings of absolute velocity, flow direction and total and static pressures have been included for both full-span and part-span stall. With the aid of these results, it has been shown that the conventional model of the flow in a stall cell is erroneous. An alternative model is proposed, based on the observation that the fluid must cross from one side of the cell to the other in order to preserve continuity in the tangential direction. An investigation of the experimental results also reveals the finer details of the flow in the cell and shows how these details are related to the design flow rate of the compressor. The influence of these cell details on the power absorbed by a stalled compressor are investigated, and consideration is given to the complex pressure patterns encountered in the compressor.


Author(s):  
Gregory S. Bloch ◽  
Walter F. O’Brien

Dynamic compression system response is a major concern in the operability of aircraft gas turbine engines. Multi-stage compression system computer models have been developed to predict compressor response to changing operating conditions. These models require a knowledge of the wide-range, steady-state operating characteristics as inputs, which has limited their use as predicting tools. The full range of dynamic axial-flow compressor operation spans forward and reversed flow conditions. A model for predicting the wide flow range characteristics of axial-flow compressor stages was developed and applied to a 3-stage, low-speed compressor with very favorable results and to a 10-stage, high-speed compressor with mixed results. Conclusions were made regarding the inception of stall and the effects associated with operating a stage in a multistage environment. It was also concluded that there are operating points of an isolated compressor stage that are not attainable when that stage is operated in a multi-stage environment.


Author(s):  
Songtao Wang ◽  
Xiaoqing Qiang ◽  
Weichun Lin ◽  
Guotai Feng ◽  
Zhongqi Wang

A subsonic multi-stage highly loaded, low-reaction, boundary layer suction axial flow compressor design concept was proposed in this paper and its feasibility was studied from theoretical analysis. This design concept could greatly raise the single stage pressure ratio while keeping the compressor efficiency in a high level. The distribution principle of total pressure ratio and static pressure ratio in a multi-stage low-reaction compressor was studied as well as the selection principle of reaction, diffusion factor and other total parameters. Considering the design feature of this new type of compressor, the internal flow in a large geometry turning angle cascade was studied in order to establish the relation between geometry parameters and surface pressure distribution. The relation between surface pressure distribution and profile loss, trailing edge loss, etc was also studied in this paper. By using this design concept combined with the boundary layer suction method, a certain eleven stages axial compressor’s count was reduced to seven. The numerical simulation was done in the last two stages which had typical flow characteristics. The simulation result proved that the multi-stage low-reaction axial flow compressor design concept was feasible.


The optimum yield of gas turbine engines has so far been driven on and around the operational efficiency of the compressor and in essence around the efficiency of the compressor blade. The efficacy of a compressor is ascertained substantially by the smoothness of the air flowing through it. In this present work, a multi-stage axial compressor in the Turbojet engine with an application for propulsion is designed based on thermodynamic calculations. The calculations were carried out employing the principles of thermodynamics, and aerodynamics along the mean streamline based on the technique of a velocity triangle in the lack of inlet guide vanes. The coordinates for the blade profile has been calculated on and around the premise of the calibrated blade base profile. The model for the seven-stage axial flow compressors based on thermodynamic calculations was devised and analyzed utilizing computational fluid dynamics methodology. The multiple reference frame approach was used to represent the impact of both rotating and stationary components and the simulation for the first stage was conducted using a periodic approach. For the intent of the verification, a comparison was made between the analytical values and the simulated values and the variation between these values was found to be 16.7%. Validation results demonstrate that the proposed method is valid and can be used for multi-stage axial compressor design and performance evaluation.


1965 ◽  
Vol 69 (659) ◽  
pp. 791-793 ◽  
Author(s):  
M. D. C. Doyle

In using the method of stage stacking to compute the off-design performance of multi-stage axial compressors, it has been observed that the limitation on performance at speeds above the design speed has been set by the stall and the choke points of the rear stages(1). Thus if the rear stages can absorb a wide range of mass flows between stalled conditions and choked conditions, a better performance could be obtained.Compressor stages using low stagger blades will absorb a large range of mass flow between stalled and choked condition; but because of the high axial velocity involved in their use, they tend to be unsuitable for low pressure stages because of the high Mach number obtained. In the higher pressure stages the increased gas temperature will lower the Mach number for the same velocity and give more efficient operation.


Author(s):  
Dilipkumar Bhanudasji Alone ◽  
Subramani Satish Kumar ◽  
Shobhavathy M. Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

This paper describes the study of flow behavior of the transonic compressor stage in un-stalled and stalled conditions. Experiments were carried out in an open circuit single stage transonic axial flow compressor test rig. The test compressor was designed for 1.35 total to total pressure ratio at corrected mass flow rate of 22 kg/s. Both steady and unsteady measurements were carried out. The operating envelop of the compressor was experimentally determined to demark the stable and unstable operating range of the compressor at different operating speeds. Variations in the rotor inlet axial and tangential velocity in the tip region were studied using a calibrated single component hot wire probe. The compressor blade element performance was obtained at full flow and near stall conditions using a three hole aerodynamic probe. The variation in flow parameters like absolute flow angle, axial Mach number, absolute Mach number, tangential Mach number, static and total pressure ratio profiles at the rotor exit were obtained and their variations along the blade height were studied at full flow and near stall conditions. Static pressure variation in the tip region along the rotor chord was studied which showed reduction in slope as stall approached. Hotwire measurements showed abrupt variation in the axial velocity as compared to tangential velocity at stalled condition. It was observed that the flow turned in tangential direction at stall, as tangential component of velocity shows more fluctuations at stall in comparison with unstalled condition. The FFT analysis of the raw signals was performed and it was observed that the nature of the rotating stall was abrupt and stall cell travels nearly at half the rotor speed.


2013 ◽  
Vol 136 (4) ◽  
Author(s):  
James H. Page ◽  
Paul Hield ◽  
Paul G. Tucker

Semi-inverse design is the automatic recambering of an aerofoil during a computational fluid dynamics (CFD) calculation in order to achieve a target lift distribution while maintaining thickness, hence, “semi-inverse.” In this design method, the streamwise distribution of curvature is replaced by a streamwise distribution of lift. The authors have developed an inverse design code based on the method of Hield (2008, “Semi-Inverse Design Applied to an Eight Stage Transonic Axial Flow Compressor,” ASME Paper No. GT2008-50430), which can rapidly design three-dimensional fan blades in a multistage environment. The algorithm uses an inner loop to design to radially varying target lift distributions, an outer loop to achieve radial distributions of stage pressure ratio and exit flow angle, and a choked nozzle to set design mass flow. The code is easily wrapped around any CFD solver. In this paper, we describe a novel algorithm for designing simultaneously for specified performance at full speed and peak efficiency at part speed, without trade-offs between the targets at each of the two operating points. We also introduce a novel adaptive target lift distribution, which automatically develops discontinuous changes of calculated magnitude, based on the passage shock, eliminating erroneous lift demands in the shock vicinity and maintaining a smooth aerofoil.


1981 ◽  
Vol 103 (4) ◽  
pp. 645-656 ◽  
Author(s):  
C. C. Koch

A procedure for estimating the maximum pressure rise potential of axial flow compressor stages is presented. A simplified stage average pitchline approach is employed so that the procedure can be used during a preliminary design effort before detailed radial distributions of blading geometry and fluid parameters are established. Semi-empirical correlations of low speed experimental data are presented that relate the stalling static-pressure-rise coefficient of a compressor stage to cascade passage geometry, tip clearance, bladerow axial spacing and Reynolds number. Blading aspect ratio is accounted for through its effect on normalized clearances, Reynolds number and wall boundary layer blockage. An unexpectedly strong effect of airfoil stagger and of the resulting flow coefficient of the stage’s vector triangle is observed in the experimental data. This is shown to be caused by the differing ability of different types of stage vector triangles to re-energize incoming low-momentum fluid. Use of a suitable “effective” dynamic head in the pressure rise coefficient gives a good correlation of this effect. Stalling pressure rise data from a wide range of both low speed and high speed compressor stages are shown to be in good agreement with these correlations.


Author(s):  
Ambrish Singh ◽  
Nand Kumar Singh

An industrial axial compressor has to meet a wide range of operation requirements. These machines have to run continuously for four to five years before going for overhaul. Hence, overall high level of efficiency may be slightly relaxed to meet this requirement. This requires axial flow compressor design to be more conservative and flexible to accommodate changes required for process industry through modern design & development approaches. This paper deals with finding of optimum flow path configuration that will allow a successful detailed design to follow. The effect of various parameters such as hub to tip ratio, proper selection of design rpm, reactions, work coefficient & flow coefficient has been investigated and selected for optimal performance of the machine. Last stage of the compressor is selected as radial stage with the advantage of reduction in axial length and to provide radial outlet, which is more suitable outlet configuration. Meanline design and streamline analysis for each configuration is determined to find out good operating range (stall-free operation) before starting the detailed design.


Sign in / Sign up

Export Citation Format

Share Document