Modeling Circular Shear in Shape Memory Polymers With Triple Shape Effect Subjected to Crystallization Under Constant Shear

Author(s):  
Swapnil Moon ◽  
I. Joga Rao ◽  
Fangda Cui

The capacity of a material to sense its environment and to change its shape on demand in a predefined way has tremendous technological significance for a wide variety of application areas. Shape memory polymers (SMPs) belong to this category of smart materials as they have the ability to undergo a shape change in a predetermined manner under the influence of an external stimulus. SMPs can recover their permanent shape after undergoing large deformation to a temporary shape on exposure to external triggers such as light, PH values and heat. Thermally induced SMPs are first generation SMPs and have been widely recognized. Crystallizable SMPs are a class of thermally induced SMPs whose temporary shape is due to formation of crystalline phases, and they will revert back to their permanent shape when the crystallization phase is melted through heating. Traditional crystallizable SMPs can only perform dual-shape memory cycles and this limits applications of crystallizable SMPs. Recently SMPs with triple shape effect have been reported that can switch from a second temporary shape to the first temporary shape and from there to the permanent shape under stimulation by heat. Our research focuses on modeling the mechanical behavior of these SMPs with triple-shape effect. The framework used in developing the model is built upon the theory of multiple natural configurations [3]. In order to model the mechanics associated with these polymers different stages of the shape fixation and recovery cycle and different phases of the material during this cycle need to be characterized. This includes developing a model for the amorphous phase and the subsequent semi-crystalline phases with different stress free states and melting of these phases. The model subsequently has been used to simulate results for a typical deformation cycle involving circular shear.

2013 ◽  
Vol 3 (1) ◽  
pp. 49-50 ◽  
Author(s):  
Guoguang Niu

The term "shape memory effect" refers to the ability of a material to be deformed and fixed into a temporary shape, and to recover its original, permanent shape upon an external stimulus (1). Shape memory polymers have attracted much interest because of their unique properties, and applied tremendously in medical area, such as biodegradable sutures, actuators, catheters and smart stents (2, 3). Shape memory usually is a thermally induced process, although it can be activated by light illumination, electrical current, magnetic, or electromagnetic field (4-6). During the process, the materials are heated directly or indirectly above their glass transition temperature (Tg) or the melting temperature (Tm) in order to recover the original shape. Non-thermally induced shape memory polymers eliminate the temperature constrains and enable the manipulation of the shape recovered under ambient temperature (7, 8). Herein, we report a novel strategy of water induced shape memory, in which the formation and dissolution of poly(ethylene glycol) (PEG) crystal is utilized for the fixation and recovery of temporary deformation of hydrophilic polymer. This water-induced shape recovery is less sensitive to temperature, of which 95% deformation is fixed in circumstance and over 75% recovery is reached even at 0 oC.


2008 ◽  
Vol 54 ◽  
pp. 96-102 ◽  
Author(s):  
Andreas Lendlein ◽  
Marc Behl

Most polymers used in clinical applications today are materials that have been developed originally for application areas other than biomedicine. On the other side, different biomedical applications are demanding different combinations of material properties and functionalities. Compared to the intrinsic material properties, a functionality is not given by nature but result from the combination of the polymer architecture and a suitable process. Examples for functionalities that play a prominent role in the development of multifunctional polymers for medical applications are biofunctionality (e.g. cell or tissue specificity), degradability, or shape-memory functionality. In this sense, an important aim for developing multifunctional polymers is tailoring of biomaterials for specific biomedical applications. Here the traditional approach, which is designing a single new homo- or copolymer, reaches its limits. The strategy, that is applied here, is the development of polymer systems whose macroscopic properties can be tailored over a wide range by variation of molecular parameters. The Shape-memory capability of a material is its ability to trigger a predefined shape change by exposure to an external stimulus. A change in shape initiated by heat is called thermally-induced shape-memory effect. Thermally, light-, and magnetically induced shape-memory polymers will be presented, that were developed especially for minimally invasive surgery and other biomedical applications. Furthermore triple-shape polymers will be introduced, that have the capability to perform two subsequent shape changes. Thus enabling more complex movements of a polymeric material.


Author(s):  
Jaskirat S. Sodhi ◽  
I. Joga Rao

Shape memory polymers (SMP’s) belong to a large family of shape memory materials, which are defined by their capacity to store a deformed (temporary) shape and recover an original (parent) shape. SMP’s have the ability to change size and shape when activated through a suitable trigger. This trigger, which can be heating the polymer or exposing it to light of a specific frequency, is responsible for the new temporary shape. Return to the original shape can be achieved by a suitable reverse trigger. Light Activated Shape Memory Polymers (LASMP) are recently developed smart materials which are synthesized with special photosensitive molecules. These molecules when exposed to Ultraviolet (UV) light at specific wavelengths, form covalent crosslinks that are responsible for providing LASMP with their temporary shape. Light activation removes temperature constraints faced by thermoresponsive SMP for medical applications and also brings the added advantage of remote activation. Thus LASMP find use in a variety of applications ranging from MEMS devices to widespread usage for biomedical devices such as intravenous needles and stents. Furthermore, the aerospace industry has found use for these materials for applications ranging from easily deployable space structures to morphing wing aircraft. The authors have introduced a constitutive model to model the mechanics of these LASMP [1]. The modeling is done using a framework based on the theory of multiple natural configurations. A few homogenous and inhomogeneous examples were solved in [1], but with tacit understanding that the intensity of light and hence the extent of reaction is homogenous throughout the polymer sample. In this paper we use the developed model to solve the cases of inhomogeneous deformation with inhomogeneous exposure to light.


Author(s):  
Jaskirat S. Sodhi ◽  
I. Joga Rao

This paper focuses on developing a model for light activated shape memory polymers (LASMP’s) undergoing deformation using the framework based on multiple natural configurations and simulating results for boundary value problems. LASMP’s are novel polymeric materials that are different in many ways from the first generation thermally controlled Shape Memory Polymers (SMP’s). Instead of using phase change to produce a mechanism, LASMP’s have photosensitive molecules grafted on their polymer chains. These photosensitive molecules, when exposed to light at certain wavelengths, form covalent bonds that act as crosslinks to give this class of SMP’s their temporary shape. By virtue of their different mechanism, LASMP’s provide a wide array of advantages such as remote activation and selective exposure, thus opening new doors as a potential for vast applications in the biomedical and aerospace industries [1].


Author(s):  
Swapnil Moon ◽  
I. Joga Rao

Shape Memory Polymers are a promising class of smart materials with applications ranging from biomedical devices to aerospace technology. SMPs have a capacity to retain complex temporary shapes involving large deformations and revert back to their original shape when triggered by external stimuli such as heat. Crystallizable SMPs are a subclass of SMPs where the transient shape is retained by formation of a crystalline phase and return to the original shape is due to melting of this crystalline phase [1]. Recently CSMPs with multiphase polymer networks containing two different crystallizable segments have been reported which have the capability to switch between three shapes when stimulated by changes in temperature [2,4]. These properties open up many new possibilities for applications. Our research is focused upon modeling the mechanics associated with these CSMPs. The model is developed using a framework based upon theory of multiple natural configurations [3]. The developed model is then used to simulate results for typical boundary value problems.


Author(s):  
Mahesh Khanolkar ◽  
Jaskirat Sodhi ◽  
I. Joga Rao

The constitutive model for the mechanics of crystallizable shape memory polymers (CSMP) has been developed in the past [1, 2]. The model was developed using the theory of multiple natural configurations and has been successful in addressing a diverse class of problems. In this research work, the efficacy of the developed CSMP model is tested by applying it to the torsion of a cylinder, which is an inhomogeneous deformation. The crystallization of the cylinder is studied under two different conditions i.e. crystallization under constant shear and crystallization under constant moment.


2018 ◽  
Vol 30 (3) ◽  
pp. 479-494 ◽  
Author(s):  
Venkata Siva C Chillara ◽  
Leon M Headings ◽  
Ryohei Tsuruta ◽  
Eiji Itakura ◽  
Umesh Gandhi ◽  
...  

This work presents smart laminated composites that enable morphing vehicle structures. Morphing panels can be effective for drag reduction, for example, adaptive fender skirts. Mechanical prestress provides tailored curvature in composites without the drawbacks of thermally induced residual stress. When driven by smart materials such as shape memory alloys, mechanically-prestressed composites can serve as building blocks for morphing structures. An analytical energy-based model is presented to calculate the curved shape of a composite as a function of force applied by an embedded actuator. Shape transition is modeled by providing the actuation force as an input to a one-dimensional thermomechanical constitutive model of a shape memory alloy wire. A design procedure, based on the analytical model, is presented for morphing fender skirts comprising radially configured smart composite elements. A half-scale fender skirt for a compact passenger car is designed, fabricated, and tested. The demonstrator has a domed unactuated shape and morphs to a flat shape when actuated using shape memory alloys. Rapid actuation is demonstrated by coupling shape memory alloys with integrated quick-release latches; the latches reduce actuation time by 95%. The demonstrator is 62% lighter than an equivalent dome-shaped steel fender skirt.


2016 ◽  
Vol 97 ◽  
pp. 93-99
Author(s):  
Jin Lian Hu ◽  
Harishkumar Narayana

Materials, structures and systems, responsive to an external stimulus are smart and adaptive to our human demands. Among smart materials, polymers with shape memory effect are at the forefront of research leading to comprehensive publications and wide applications. In this paper, we extend the concept of shape memory polymers to stress memory ones, which have been discovered recently. Like shape memory, stress memory represents a phenomenon where the stress in a polymer can be programmed, stored and retrieved reversibly with an external stimulus such as temperature and magnetic field. Stress memory may be mistaken as the recovery stress which was studied quite broadly. Our further investigation also reveals that stress memory is quite different from recovery stress containing multi-components including elastic and viscoelastic forces in addition to possible memory stress. Stress memory could be used into applications such as sensors, pressure garments, massage devices, electronic skins and artificial muscles. The current revelation of stress memory potentials is emanated from an authentic application of memory fibres, films, and foams in the smart compression devices for the management of chronic and therapeutic disorders.


Author(s):  
Shawn A. Chester ◽  
Vikas Srivastava ◽  
Claudio V. Di Leo ◽  
Lallit Anand

The most common shape-memory polymers are those in which the shape-recovery is thermally-induced. A body made from such a material may be subjected to large deformations at an elevated temperature above its glass transition temperature &Vthgr;g. Cooling the deformed body to a temperature below &Vthgr;g under active kinematical constraints fixes the deformed shape of the body. The original shape of the body may be recovered if the material is heated back to a temperature above &Vthgr;g without the kinematical constraints. This phenomenon is known as the shape-memory effect. If the shape recovery is partially constrained, the material exerts a recovery force and the phenomenon is known as constrained-recovery.


Author(s):  
L. Santo ◽  
L. Iorio ◽  
G. M. Tedde ◽  
F. Quadrini

Shape Memory Polymer Composites (SMPCs) are smart materials showing the structural properties of long-fiber polymer-matrix together with the functional behavior of shape memory polymers. In this study, SM carbon fiber reinforced (CFR) composites have been produced by using a SM interlayer between two CFR prepregs. Their SM properties have been evaluated in comparison with traditional structural CFR composites without the SM interlayer by using an especially designed test. Active and frozen forces are measured during a thermo-mechanical cycle in the three-point bending configuration. Experimental results show that SMPCs are able to fix a temporary deformed shape by freezing high stresses.


Sign in / Sign up

Export Citation Format

Share Document