Synthesis of Concave Helical Compression Springs

Author(s):  
Naresh Kumar Gandham ◽  
Hong Zhou

Helical compression springs are used to resist compressive forces or store energy in push mode. They are found in many applications that include automotive, aerospace and medical devices. The common configuration of helical compression springs is straight cylindrical shape that has constant coil diameter, constant pitch and constant spring rate. Unlike cylindrical helical compression springs, concave helical compression springs have a larger diameter at each end and a smaller diameter in the middle of the spring. The variable coil diameter enables them to produce desired load deflection characteristics, reduce solid height, buckling and surging, and keep them centered on a larger diameter hole. The unique features of concave helical compression springs also raise their synthesis challenges. In this paper, a method is introduced to synthesize concave helical compression springs. The variable coil diameter of a concave helical compression spring is described by a spline curve. A cylinder with variable diameter is generated by revolving the spline curve on spring axis. The concave helical compression spring is then modeled by wrapping a spring wire on the variable diameter cylinder. The synthesis of a concave helical compression spring is systemized as the optimization of the geometric control parameters of its wrapped spring wire. A synthesis example is presented in the paper to verify the effectiveness and demonstrate the procedure of the introduced method.

2021 ◽  
Author(s):  
Harshkumar Patel ◽  
Hong Zhou

Abstract Springs are mechanical devices that are employed to resist forces, store energy, absorb shocks, mitigate vibrations, or maintain parts contacting each other. Spring wires are commonly coiled in the forms of helixes for either extension or compression. Helical springs usually have cylindrical shapes that have constant coil diameter, constant pitch and constant spring rate. Unlike conventional cylindrical coil springs, the coil diameter of conically coiled springs is variable. They have conical or tapered shapes that have a large coil diameter at the base and a small coil diameter at the top. The variable coil diameter enables conical coil springs generate desired load deflection relationships, have high lateral stability and low buckling liability. In addition, conical compression springs can have significantly larger compression or shorter compressed height than conventional helical compression springs. The compressed height of a conical compression spring can reach its limit that is the diameter of the spring wire if it is properly synthesized. The height of an undeformed conical coil spring can have its height of its spring wire if the spring pitch is chosen to be zero. The variable coil diameter of conical coil springs provides them with unique feature, but also raises their synthesis difficulties. Synthesizing conical coil springs that require large spring compression or small deformed spring height or constant spring rate is challenging. This research is motivated by surmounting the current challenges facing conical coil springs. In this research, independent parameters are introduced to control the diameter and pitch of a conical coil spring. Different conical coil springs are modeled. Their performances are simulated using the created models. The deflection-force relationships of conical coil springs are analyzed. The results from this research provide useful guidelines for developing conical coil springs.


Author(s):  
Riyaz Mohammed ◽  
Hong Zhou

Helical extension springs store energy and provide resistance to tensile loads that are applied through appropriate spring ends. Typical spring ends include different types of hooks or loops. Both ends of a helical extension spring are attached to other components. When the two components move apart and their distance is increased, the helical extension spring exerts a tensile force between the two components and tries to decrease their distance. There are various applications for helical extension springs that include automobiles, toys, hand tools, agriculture machines, textile machines, and medical devices. The common configuration of helical extension springs uses straight cylindrical shape that has constant coil diameter and pitch. Unlike regular helical extension springs, variable-diameter helical extension springs do not employ constant coil diameter. Their variable coil diameter enables them to produce desired force deformation relationships and reduce stress concentration. The distinctive features of variable-diameter helical extension springs also raise their synthesis challenges. To surmount these challenges, a method is introduced in this paper to model and design variable-diameter helical extension springs. The configuration of a synthesized spring is described by a composite parametric curve. The entire spring is defined by its control parameters. Synthesizing the spring is systematized as optimizing its control parameters. Examples on modeling, analyzing and designing springs are presented in the paper to demonstrate the procedure and verify the effectiveness of the introduced synthesis method.


2021 ◽  
Vol 22 ◽  
pp. 50
Author(s):  
Guillaume Cadet ◽  
Manuel Paredes ◽  
Hervé Orcière

In a context of increased competition, companies are looking to optimize all the components of their systems. They use compression springs with constant pitch for their linear force/length relationship. However, it appears that the classic formula determining the global load-length of the spring is not always accurate enough. It does not consider the effects of the spring's ends, which can induce non-linear behaviour at the beginning of compression and thus propagate an error over the full load-length estimated. The paper investigates the entire behaviour of a cylindrical compression spring, not ground, using analytical, simulation and experimental approaches in order to help engineers design compression springs with greater accuracy. It is built with an analytical finite element method, considering all the geometry and force components of the spring. As a result, the global load-length of compression springs can be calculated with more accuracy. Moreover, it is now possible to determine the effective tri-linear load-length relation of compression springs not ground and thus to enlarge the operating range commonly defined by standards. This study is the first that enables the behaviour to be calculated quickly, by saving time on dimensioning optimisation and on the manufacturing process of compression springs not ground.


2021 ◽  
Vol 63 (3) ◽  
pp. 226-230
Author(s):  
Fatih Özen ◽  
Ahmet İlhan ◽  
Hakkı Taner Sezan ◽  
Erdinç İlhan ◽  
Salim Aslanlar

Abstract In this study, a compression spring fatigue problem arising from the galvanization process was investigated. Fatigue, crack initiation and growth of galvanized and non-galvanized springs manufactured from fully pearlitic high strength steel wires were investigated. According to the results, the galvanized compression springs exhibited a low fatigue life due to hydrogen embrittlement. Hydrogen embrittlement induced crack initiations formed under the galvanizing layer and adversely affect fatigue life. It was observed that local embrittlement on the outer surface of the spring wire causes crack initiations and disperses through the pearlitic interlamellar microstructure. Compared to non-galvanized and shot-peened specimens with the same surface roughness, compression springs, galvanized compression springs exhibited a 25 % reaction force loss at 50 000 cycles.


2021 ◽  
Vol 1037 ◽  
pp. 227-232
Author(s):  
Nikita A. Zemlyanushnov ◽  
Nadezhda Y. Zemlyanushnova

The disadvantage of the known methods of hardening springs is the impossibility of their use when hardening springs of a conical shape or of a shape of a paraboloid of rotation, since they are intended only for cylindrical shape springs and are not suitable for conical shape springs or those of a shape of a paraboloid of rotation specifically because of the difference in the shape of the springs. One of the disadvantages of the known springs hardening mechanisms is the impossibility of hardening the inner surface of the conical compression springs. A new method of hardening springs is proposed, the unmatched advantage of which is the ability to create plastic deformations on the inner and outer surfaces of the spring coils compressed to contact and on the surfaces along the line of contact between the coils. A new advantageous mechanism for hardening springs is proposed, which makes it possible to harden the inner surface of compression springs having a conical shape or a paraboloid shape of rotation, in a compressed state.


2011 ◽  
Vol 239-242 ◽  
pp. 2128-2131 ◽  
Author(s):  
Julie Juliewatty Mohamed ◽  
Phua Chee Hung ◽  
Zainal Arifin Ahmad

Inter-metallic compound of Ti3SiC2was produced via modified-SHS (self-propagating high temperature synthesis). Elemental powders of titanium, silicon and graphite were weighed according to their stoichiometric ratios (3:1:2) respectively. These powders were ball milled for 1 hour, then compacted into cylindrical shape. Synthesis of Ti3SiC2was carried out by using arc melting method. The effect of different arc melting time of 10, 30 and 60 seconds was studied. Phase formation and microstructure were analyzed by using XRD and SEM. The formation of Ti3SiC2was confirmed by XRD, and the SEM micrograph shows that the grain is in needle shape. XRD result also shows that the impurities are present in all the samples. TiC appeared to be the common and dominant impurity in all samples, with relatively low intensities in Ti5Si3and TiSi2phases. Some raw materials phase was still existed in sample arc melted for 10 and 30 seconds. Hence, it can be deduced that the raw materials had not yet fully taking part in the formation of Ti3SiC2.


2019 ◽  
Vol 487 (1) ◽  
pp. 107-110
Author(s):  
M. M. Kuklina ◽  
V. V. Kuklin

An ecological and physiological study of Common Eider (Somateria mollissima) nesting on the coast of Eastern Murman was carried out. The species composition of helminthofauna of birds and the quantitative parameters of the infection were studied. It is established that trematodes of the genus Microphallus, three species of cestodes - Lateriporus teres (Cestoda: Dilepididae), Fimbriarioides intermedia (Cestoda: Hymenolepididae), Microsomacanthus diorchis (Cestoda: Hymenolepididae) and one species of acanthocephalan - Polymorphus phippsi (Palaeacanthocephala: Polymorphidae) parasitized in the small intestine of Common Eider. It is shown that the activity of proteases decreased at the locations of F. intermedia and M. diorchis in the intestines of birds, with infestation with the acanthocephalan P. phippsi, on the contrary, increased. The activity of glycosides in the intestinal mucosa was reduced in comparison with the control values by infection cestodes M. diorchis. There was an increase in the values of hematological indices in infected individuals relative to the control parameters.


Author(s):  
B. Athey ◽  
J. Langmore ◽  
S. Williams ◽  
M. Smith ◽  
C.F. Chang ◽  
...  

Although there is general agreement that inactive chromosome fibers consist of helically packed nucleosomes, the pattern of packing is still disputed. The nucleosome itself is composed of a highly conserved “core” comprised of 146bp of DNA and a histone octamer, and a variable “linker” comprised of 20-100bp of DNA bound to histone H1. The models of chromatin structure can be distinguished by their dependence upon linker length. The solenoid model for chromatin structure is a single helix with constant pitch (11 nm) and constant diameter (25-30nm). The twisted-ribbon model is a double helix with variable pitch (26-40nm) and constant diameter (30nm). The crossed-linker model is a double helix with conserved pitch (26-28nm) and variable diameter (26-40nm). Measurements of the diameter and apparent helical parameters of negatively-stained chromatin from Thyone sperm (87bp linker) and Necturus erythrocytes (48bp linker) are in agreement with a left-handed crossed-linker model, and in disagreement with the solenoid and twisted-ribbon models.


Author(s):  
Mohsen Shahinpoor ◽  
Martin W. J. Burmeister ◽  
Wesley Hoffman

Abstract Presented are the details for design and fabrication of a novel micro-robotic actuator in a few micron-size range. The model is in the form of contractile fiber bundles embedded in or around micron size helical compression springs. The fiber bundle is assumed to consist of a parallel array of contractile fibers made form either electrically or chemically (pH muscles) contractile ionic polymeric muscles such as polyacrylic acid plus sodium acrylate cross-linked with bisacrylamide (PAAM) or polyacrylonitrile (PAN) fibers or electrically contractile shape-memory alloy (SMA) fiber bundles. The proposed model considers the electrically or pH-induced contraction of the ionic polymeric fibers as well as resistive heating of the SMA fiber bundles in case of shape-memory alloys. A theoretical model is also presented for the dynamic modeling of such micron size robotic actuators. These robotic micro-actuators will open a new frontier to the micro-universes of biological, scientific, medical and engineering systems. On the fabrication side, helical compression springs and bellows in a few microns size range have been manufactured in our laboratories to serve as the main resilient structure for the micro-robotic actuator. In principle, any size micro-robotic linear actuator can be fabricated and tested in our laboratory. For the case of ionic polymeric gel fibers the model consists of an encapsulated hermetically sealed, helical compression spring-loaded cylindrical linear actuators containing a counterionic solution or electrolyte such as water+acetone, a cylindrical helical compression micro-spring and a collection of polymeric gel fibers (polyelectrolytes) such as polyvinyl alcohol (PVA) polyacrylic acid (PAA) or polyacrylamide. Furthermore, the helical micro-spring not only acts as a compression spring between the two hermetically sealed circular end-caps but contains snugly the polymeric gel fiber bundle and also acts as the cathode (anode) electrode -while the two actuator end-caps act as the other cathode (anode) electrodes. In this fashion, a DC electric field of a few volts per centimeter per gram of polymer gel can cause the polymer gel fiber bundle to contract (expand). This causes the compression spring to contract and pull the two end-caps closer to each other against the elastic resistance of the helical spring. By reversing the action by means of reversing the electric field polarities the gel is allowed to expand while the compression spring is also expanding and helping the linear expansion of the actuator since the polymeric gel muscle expands due to the induced alkalinity along the helical spring body. Thus, electrical control of the expansion and the contraction of the micro-robotic linear actuator is possible. A mathematical model is presented based on the proposed composite structure that takes into account all pertinent variables such as the pH of the gel fiber bundle, the pH of the surrounding medium, the hyperelastic parameters of the fiber bundle, the electrical variables of the gel, the electric field strength, the pH field strength and all pertinent dimensions followed by some numerical and experimental simulations and data. For the second model, we consider the fiber bundle of SMA to be either circumscribed inside a micron size helical compression spring with flat heads or in parallel with a number helical compression springs, end-capped by two parallel circular plates with embedded electrodes to which the ends of the SMA fibers are secured. Thus, the fibers can be electrically heated and subsequently contracted to compress the helical compression spring back and forth. Design details are first described. In essence the dynamic behavior of the actuator depends on the interaction between the current supplied to the wires and the heat transfer from the wires. Further, a mathematical model is presented to simulate the electro-thermo-mechanics of motion of such actuators. The proposed model takes into account all pertinent variables such as the strain ϵ, the temperature of the fibers T(t) as a function of time t, the ambient temperature T0, the martensite fraction ξ, the helical compression spring constant k and the overall heat transfer coefficient h. Numerical simulations are then carried out and the results are compared with experimental observations of a number of fabricated systems in a size range of a few mcrons.


2012 ◽  
Vol 569 ◽  
pp. 712-717 ◽  
Author(s):  
Xing Zhi Hu ◽  
Xiao Qian Chen ◽  
Yong Zhao

Direction cosine matrix, Euler angles and quaternions are the common methods for translating vector equations into scalar equations. These methods used in separation simulation lack systematic discussion and comparison. This article is trying to present a proper coordinate transformation method for dynamic analysis of satellite separation. 321 and 123 rotations of Euler angles are proposed to construct the dynamic equations, which is different from simulation of missiles by the rotation of 321 and 231. Both Euler angles and quaternions are adopted to model the separation process of a small satellite that uses the helical compression springs mechanism. Feasibility and practicability of the approach are proved by comparing the simulation results, which are solved in MATLAB and ADAMS software platforms. It is concluded that the method of quaternions is more accurate and efficient in dynamic simulation of satellite separation.


Sign in / Sign up

Export Citation Format

Share Document