scholarly journals Improved analytical model for cylindrical compression springs not ground considering end behavior of end coils

2021 ◽  
Vol 22 ◽  
pp. 50
Author(s):  
Guillaume Cadet ◽  
Manuel Paredes ◽  
Hervé Orcière

In a context of increased competition, companies are looking to optimize all the components of their systems. They use compression springs with constant pitch for their linear force/length relationship. However, it appears that the classic formula determining the global load-length of the spring is not always accurate enough. It does not consider the effects of the spring's ends, which can induce non-linear behaviour at the beginning of compression and thus propagate an error over the full load-length estimated. The paper investigates the entire behaviour of a cylindrical compression spring, not ground, using analytical, simulation and experimental approaches in order to help engineers design compression springs with greater accuracy. It is built with an analytical finite element method, considering all the geometry and force components of the spring. As a result, the global load-length of compression springs can be calculated with more accuracy. Moreover, it is now possible to determine the effective tri-linear load-length relation of compression springs not ground and thus to enlarge the operating range commonly defined by standards. This study is the first that enables the behaviour to be calculated quickly, by saving time on dimensioning optimisation and on the manufacturing process of compression springs not ground.

Author(s):  
Naresh Kumar Gandham ◽  
Hong Zhou

Helical compression springs are used to resist compressive forces or store energy in push mode. They are found in many applications that include automotive, aerospace and medical devices. The common configuration of helical compression springs is straight cylindrical shape that has constant coil diameter, constant pitch and constant spring rate. Unlike cylindrical helical compression springs, concave helical compression springs have a larger diameter at each end and a smaller diameter in the middle of the spring. The variable coil diameter enables them to produce desired load deflection characteristics, reduce solid height, buckling and surging, and keep them centered on a larger diameter hole. The unique features of concave helical compression springs also raise their synthesis challenges. In this paper, a method is introduced to synthesize concave helical compression springs. The variable coil diameter of a concave helical compression spring is described by a spline curve. A cylinder with variable diameter is generated by revolving the spline curve on spring axis. The concave helical compression spring is then modeled by wrapping a spring wire on the variable diameter cylinder. The synthesis of a concave helical compression spring is systemized as the optimization of the geometric control parameters of its wrapped spring wire. A synthesis example is presented in the paper to verify the effectiveness and demonstrate the procedure of the introduced method.


2021 ◽  
Author(s):  
Harshkumar Patel ◽  
Hong Zhou

Abstract Springs are mechanical devices that are employed to resist forces, store energy, absorb shocks, mitigate vibrations, or maintain parts contacting each other. Spring wires are commonly coiled in the forms of helixes for either extension or compression. Helical springs usually have cylindrical shapes that have constant coil diameter, constant pitch and constant spring rate. Unlike conventional cylindrical coil springs, the coil diameter of conically coiled springs is variable. They have conical or tapered shapes that have a large coil diameter at the base and a small coil diameter at the top. The variable coil diameter enables conical coil springs generate desired load deflection relationships, have high lateral stability and low buckling liability. In addition, conical compression springs can have significantly larger compression or shorter compressed height than conventional helical compression springs. The compressed height of a conical compression spring can reach its limit that is the diameter of the spring wire if it is properly synthesized. The height of an undeformed conical coil spring can have its height of its spring wire if the spring pitch is chosen to be zero. The variable coil diameter of conical coil springs provides them with unique feature, but also raises their synthesis difficulties. Synthesizing conical coil springs that require large spring compression or small deformed spring height or constant spring rate is challenging. This research is motivated by surmounting the current challenges facing conical coil springs. In this research, independent parameters are introduced to control the diameter and pitch of a conical coil spring. Different conical coil springs are modeled. Their performances are simulated using the created models. The deflection-force relationships of conical coil springs are analyzed. The results from this research provide useful guidelines for developing conical coil springs.


2019 ◽  
Vol 20 (6) ◽  
pp. 625
Author(s):  
Manuel Paredes ◽  
Thomas Stephan ◽  
Hervé Orcière

Cylindrical extension springs have been commonly exploited in mechanical systems for years and their behavior could be considered as well identified. Nevertheless, it appears that the influence of the loops on the global stiffness is not yet taken into account properly. Moreover, it would be of key interest to analyze how initial tension in extension springs influences the beginning of the load-length curve. The paper investigates these topics using analytical, simulation and experimental approaches in order to help engineers design extension springs with greater accuracy. As a result, the stiffness of the loops has been analytically defined. It enables to calculate the global stiffness of extension springs with more accuracy and it is now possible to determine the effective beginning of the linear load-length relation of extension springs and thus to enlarge the operating range commonly defined by standards. Moreover, until now manufacturers had to define by a try and error process the axial pitch of the body of extension springs in order to obtain the required initial tension. Our study enables for the first time to calculate quickly this key parameter saving time on the manufacturing process of extension springs.


Author(s):  
Mohsen Shahinpoor ◽  
Martin W. J. Burmeister ◽  
Wesley Hoffman

Abstract Presented are the details for design and fabrication of a novel micro-robotic actuator in a few micron-size range. The model is in the form of contractile fiber bundles embedded in or around micron size helical compression springs. The fiber bundle is assumed to consist of a parallel array of contractile fibers made form either electrically or chemically (pH muscles) contractile ionic polymeric muscles such as polyacrylic acid plus sodium acrylate cross-linked with bisacrylamide (PAAM) or polyacrylonitrile (PAN) fibers or electrically contractile shape-memory alloy (SMA) fiber bundles. The proposed model considers the electrically or pH-induced contraction of the ionic polymeric fibers as well as resistive heating of the SMA fiber bundles in case of shape-memory alloys. A theoretical model is also presented for the dynamic modeling of such micron size robotic actuators. These robotic micro-actuators will open a new frontier to the micro-universes of biological, scientific, medical and engineering systems. On the fabrication side, helical compression springs and bellows in a few microns size range have been manufactured in our laboratories to serve as the main resilient structure for the micro-robotic actuator. In principle, any size micro-robotic linear actuator can be fabricated and tested in our laboratory. For the case of ionic polymeric gel fibers the model consists of an encapsulated hermetically sealed, helical compression spring-loaded cylindrical linear actuators containing a counterionic solution or electrolyte such as water+acetone, a cylindrical helical compression micro-spring and a collection of polymeric gel fibers (polyelectrolytes) such as polyvinyl alcohol (PVA) polyacrylic acid (PAA) or polyacrylamide. Furthermore, the helical micro-spring not only acts as a compression spring between the two hermetically sealed circular end-caps but contains snugly the polymeric gel fiber bundle and also acts as the cathode (anode) electrode -while the two actuator end-caps act as the other cathode (anode) electrodes. In this fashion, a DC electric field of a few volts per centimeter per gram of polymer gel can cause the polymer gel fiber bundle to contract (expand). This causes the compression spring to contract and pull the two end-caps closer to each other against the elastic resistance of the helical spring. By reversing the action by means of reversing the electric field polarities the gel is allowed to expand while the compression spring is also expanding and helping the linear expansion of the actuator since the polymeric gel muscle expands due to the induced alkalinity along the helical spring body. Thus, electrical control of the expansion and the contraction of the micro-robotic linear actuator is possible. A mathematical model is presented based on the proposed composite structure that takes into account all pertinent variables such as the pH of the gel fiber bundle, the pH of the surrounding medium, the hyperelastic parameters of the fiber bundle, the electrical variables of the gel, the electric field strength, the pH field strength and all pertinent dimensions followed by some numerical and experimental simulations and data. For the second model, we consider the fiber bundle of SMA to be either circumscribed inside a micron size helical compression spring with flat heads or in parallel with a number helical compression springs, end-capped by two parallel circular plates with embedded electrodes to which the ends of the SMA fibers are secured. Thus, the fibers can be electrically heated and subsequently contracted to compress the helical compression spring back and forth. Design details are first described. In essence the dynamic behavior of the actuator depends on the interaction between the current supplied to the wires and the heat transfer from the wires. Further, a mathematical model is presented to simulate the electro-thermo-mechanics of motion of such actuators. The proposed model takes into account all pertinent variables such as the strain ϵ, the temperature of the fibers T(t) as a function of time t, the ambient temperature T0, the martensite fraction ξ, the helical compression spring constant k and the overall heat transfer coefficient h. Numerical simulations are then carried out and the results are compared with experimental observations of a number of fabricated systems in a size range of a few mcrons.


2021 ◽  
Vol 63 (3) ◽  
pp. 226-230
Author(s):  
Fatih Özen ◽  
Ahmet İlhan ◽  
Hakkı Taner Sezan ◽  
Erdinç İlhan ◽  
Salim Aslanlar

Abstract In this study, a compression spring fatigue problem arising from the galvanization process was investigated. Fatigue, crack initiation and growth of galvanized and non-galvanized springs manufactured from fully pearlitic high strength steel wires were investigated. According to the results, the galvanized compression springs exhibited a low fatigue life due to hydrogen embrittlement. Hydrogen embrittlement induced crack initiations formed under the galvanizing layer and adversely affect fatigue life. It was observed that local embrittlement on the outer surface of the spring wire causes crack initiations and disperses through the pearlitic interlamellar microstructure. Compared to non-galvanized and shot-peened specimens with the same surface roughness, compression springs, galvanized compression springs exhibited a 25 % reaction force loss at 50 000 cycles.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Manuel Paredes

Most research papers that exploit conical springs focus only on conical springs with a constant pitch. In order to increase the range of possibilities for designers, this paper proposes a study of conical springs with other types of spirals projected on the conical shape. This study is related to three other types of conical springs: with a constant helix angle, with a constant stress at solid and with a fully linear load-length relation. For each spring, we give the equation of the spiral, the formula of the initial stiffness, and formulae to calculate the nonlinear part of the load-length relation for fully telescoping springs. We also report an experimental study performed to analyze the accuracy of the proposed study based on springs made by fused deposition modeling.


1963 ◽  
Vol 85 (3) ◽  
pp. 243-246 ◽  
Author(s):  
Eric E. Ungar

Transmissibility expressions that take wave effects into account are derived for masses mounted on highly viscoelastic leaf springs and compression springs. Approximations suitable for large ratios of mounted mass to spring mass are introduced, and equations are derived that give the approximate magnitudes of the transmissibility peaks associated with standing wave resonances and the corresponding frequencies. The validity of these approximations is verified by comparison with directly computed results. It is shown that a leaf spring results in a higher first standing wave frequency, in lower density of transmissibility peaks, and in a higher envelope of these peaks than a compression spring of the same mass, loss factor, and static stiffness.


2005 ◽  
Vol 128 (6) ◽  
pp. 1352-1356 ◽  
Author(s):  
Emmanuel Rodriguez ◽  
Manuel Paredes ◽  
Marc Sartor

Cylindrical compression spring behavior has been described in the literature using an efficient analytical model. Conical compression spring behavior has a linear phase but can also have a nonlinear phase. The rate of the linear phase can easily be calculated but no analytical model exists to describe the nonlinear phase precisely. This nonlinear phase can only be determined by a discretizing algorithm. The present paper presents analytical continuous expressions of length as a function of load and load as a function of length for a constant pitch conical compression spring in the nonlinear phase. Whal’s basic cylindrical compression assumptions are adopted for these new models (Wahl, A. M., 1963, Mechanical Springs, Mc Graw-Hill, New York). The method leading to the analytical expression involves separating free and solid/ground coils, and integrating elementary deflections along the whole spring. The inverse process to obtain the spring load from its length is assimilated to solve a fourth order polynomial. Two analytical models are obtained. One to determine the length versus load curve and the other for the load versus length curve. Validation of the new conical spring models in comparison with experimental data is performed. The behavior law of a conical compression spring can now be analytically determined. This kind of formula is useful for designers who seek to avoid using tedious algorithms. Analytical models can mainly be useful in developing interactive assistance tools for conical spring design, especially where optimization methods are used.


Author(s):  
Jonathan W. Wittwer ◽  
Larry L. Howell

As mechanisms approach the micro scale, manufacture and assembly of linear coil springs becomes nearly impossible. For this reason, compliant functionally binary pinned-pinned segments are frequently used in place of them. A new pseudo-rigid-body model (PRBM) is presented for circular functionally binary pinned-pinned (FBPP) segments that undergo large, nonlinear deflections for both tension and compression. A new method of evaluating the maximum moment in the beam is presented, called the focal moment method, which significantly increases the accuracy of the force for a given displacement. This paper also shows how some FBPP segments can be modeled as simple linear tension/compression springs. The deflection limits for a given maximum error can be determined analytically, thereby making it possible to use optimization algorithms in the design of these springs. The effect of the size of the rigid pin joints is also discussed.


1999 ◽  
Vol 121 (3) ◽  
pp. 524-531 ◽  
Author(s):  
R. J. Seethaler ◽  
I. Yellowley

The authors discuss a novel approach to estimation of individual tooth runout in milling. The approach is based upon a simplified linear force model and leads to good results at high values of immersion. Two variants of the approach for estimating runout are presented. The first method utilizes torque while the second considers in plane force components as indicators of runout. Simulations are used to verify the equations that were derived for relating runout to in plane forces and to allow the assessment of the influence of the spacing of the discrete force samples on accuracy. Experimental evidence validates the approach for a wide range of immersion values. Experiments also show that the approach is able to identify edge breakage in the presence of significant initial runout.


Sign in / Sign up

Export Citation Format

Share Document