Design, Modeling and Fabrication of Micro-Robotic Actuators With Ionic Polymeric Gel and SMA Micro-Muscles

Author(s):  
Mohsen Shahinpoor ◽  
Martin W. J. Burmeister ◽  
Wesley Hoffman

Abstract Presented are the details for design and fabrication of a novel micro-robotic actuator in a few micron-size range. The model is in the form of contractile fiber bundles embedded in or around micron size helical compression springs. The fiber bundle is assumed to consist of a parallel array of contractile fibers made form either electrically or chemically (pH muscles) contractile ionic polymeric muscles such as polyacrylic acid plus sodium acrylate cross-linked with bisacrylamide (PAAM) or polyacrylonitrile (PAN) fibers or electrically contractile shape-memory alloy (SMA) fiber bundles. The proposed model considers the electrically or pH-induced contraction of the ionic polymeric fibers as well as resistive heating of the SMA fiber bundles in case of shape-memory alloys. A theoretical model is also presented for the dynamic modeling of such micron size robotic actuators. These robotic micro-actuators will open a new frontier to the micro-universes of biological, scientific, medical and engineering systems. On the fabrication side, helical compression springs and bellows in a few microns size range have been manufactured in our laboratories to serve as the main resilient structure for the micro-robotic actuator. In principle, any size micro-robotic linear actuator can be fabricated and tested in our laboratory. For the case of ionic polymeric gel fibers the model consists of an encapsulated hermetically sealed, helical compression spring-loaded cylindrical linear actuators containing a counterionic solution or electrolyte such as water+acetone, a cylindrical helical compression micro-spring and a collection of polymeric gel fibers (polyelectrolytes) such as polyvinyl alcohol (PVA) polyacrylic acid (PAA) or polyacrylamide. Furthermore, the helical micro-spring not only acts as a compression spring between the two hermetically sealed circular end-caps but contains snugly the polymeric gel fiber bundle and also acts as the cathode (anode) electrode -while the two actuator end-caps act as the other cathode (anode) electrodes. In this fashion, a DC electric field of a few volts per centimeter per gram of polymer gel can cause the polymer gel fiber bundle to contract (expand). This causes the compression spring to contract and pull the two end-caps closer to each other against the elastic resistance of the helical spring. By reversing the action by means of reversing the electric field polarities the gel is allowed to expand while the compression spring is also expanding and helping the linear expansion of the actuator since the polymeric gel muscle expands due to the induced alkalinity along the helical spring body. Thus, electrical control of the expansion and the contraction of the micro-robotic linear actuator is possible. A mathematical model is presented based on the proposed composite structure that takes into account all pertinent variables such as the pH of the gel fiber bundle, the pH of the surrounding medium, the hyperelastic parameters of the fiber bundle, the electrical variables of the gel, the electric field strength, the pH field strength and all pertinent dimensions followed by some numerical and experimental simulations and data. For the second model, we consider the fiber bundle of SMA to be either circumscribed inside a micron size helical compression spring with flat heads or in parallel with a number helical compression springs, end-capped by two parallel circular plates with embedded electrodes to which the ends of the SMA fibers are secured. Thus, the fibers can be electrically heated and subsequently contracted to compress the helical compression spring back and forth. Design details are first described. In essence the dynamic behavior of the actuator depends on the interaction between the current supplied to the wires and the heat transfer from the wires. Further, a mathematical model is presented to simulate the electro-thermo-mechanics of motion of such actuators. The proposed model takes into account all pertinent variables such as the strain ϵ, the temperature of the fibers T(t) as a function of time t, the ambient temperature T0, the martensite fraction ξ, the helical compression spring constant k and the overall heat transfer coefficient h. Numerical simulations are then carried out and the results are compared with experimental observations of a number of fabricated systems in a size range of a few mcrons.

2005 ◽  
Vol 11 (4) ◽  
pp. 354-362 ◽  
Author(s):  
Uri Admon ◽  
David Donohue ◽  
Helmut Aigner ◽  
Gabriele Tamborini ◽  
Olivier Bildstein ◽  
...  

Physical, chemical, and isotopic analyses of individual radioactive and other particles in the micron-size range, key tools in environmental research and in nuclear forensics, require the ability to precisely relocate particles of interest (POIs) in the secondary ion mass spectrometer (SIMS) or in another instrument, after having been located, identified, and characterized in the scanning electron microscope (SEM). This article describes the implementation, testing, and evaluation of the triangulation POIs re-location method, based on microscopic reference marks imprinted on or attached to the sample holder, serving as an inherent coordinate system. In SEM-to-SEM and SEM-to-SIMS experiments re-location precision better than 10 μm and 20 μm, respectively, is readily attainable for instruments using standard specimen stages. The method is fast, easy to apply, and facilitates repeated analyses of individual particles in different instruments and laboratories.


2021 ◽  
Author(s):  
Mutsuaki Edama ◽  
Tomoya Takabayashi ◽  
Hirotake Yokota ◽  
Ryo Hirabayashi ◽  
Chie Sekine ◽  
...  

Abstract Background For the anterior talofibular ligament (ATFL), a three-fiber bundle has recently been suggested to be weaker than a single or double fiber bundle in terms of ankle plantarflexion and inversion braking function. However, the studies leading to those results all used elderly specimens. Whether the difference in fiber bundles is a congenital or an acquired morphology is important when considering methods to prevent ATFL damage. The purpose of this study was to classify the number of fiber bundles in the ATFL of fetuses. Methods This study was conducted using 30 legs from 15 Japanese fetuses (mean weight, 1764.6 ± 616.9 g; mean crown-rump length, 283.5 ± 38.7 mm; 8 males, 7 females). The ATFL was then classified by the number of fiber bundles: Type I, one fiber bundle; Type II, two fiber bundles; and Type III, three fiber bundles. Results Ligament type was Type I in 5 legs (16.7%), Type II in 21 legs (70%), and Type III in 4 legs (13.3%). Conclusions The present results suggest that the three fiber bundles of the structure of the ATFL may be an innate structure.


1989 ◽  
Vol 46 (11) ◽  
pp. 709-713 ◽  
Author(s):  
Tohru SHIGA ◽  
Yoshiharu HIROSE ◽  
Akane OKADA ◽  
Toshio KURAUCHI

1999 ◽  
Vol 13 (14n16) ◽  
pp. 1682-1688
Author(s):  
Masayoshi Konishi ◽  
Teruhisa Nagashima ◽  
Yoshinobu Asako

We newly developed ER particles with sub-micron size. The particle was polymer graft carbon black (GCB1) composed of carbon black particles and a polymer. The average particle size of GCB1 was found to be 81 nm. An ER suspension (ER1) was obtained by mixing GCB1 (30 wt%) with silicone oil (70 wt%). The ER1 showed excellent dispersion stability. Further, GCB1 particles did not settle under centrifuging at 9000G. The zero-field viscosity was 80 mPa·s at 25°C. The kinetic friction coefficient of ER1 was 0.15, while that of the silicone oil used was 0.23. When the electric field of 3 kV/mm (AC 1000 Hz) at the temperature of 25°C and the shear rate of 700 s -1 was applied to ER1, the shear stress of 116Pa was induced. The induced shear stress did not change for a long period of time period. In the temperature range between 25 and 150°C the induced shear stress and the current density were almost constant at any electric field. When 3 kV/mm (AC 50Hz) at 25°C and 700s-1 was applied to ER1, the shear stress of 88Pa was induced but the deviation of the induced shear stress from the average value was pluses and minuses 3 Pa.


2020 ◽  
Vol 298 (7) ◽  
pp. 867-878
Author(s):  
Anna M. Lechner ◽  
Tanja Feller ◽  
Qimeng Song ◽  
Bernd A. F. Kopera ◽  
Lukas Heindl ◽  
...  

2017 ◽  
Vol 37 (2) ◽  
pp. 85-99
Author(s):  
Josiney A. Souza ◽  
Hélio V. M. Tozatti

This paper studies dispersiveness of semiflows on fiber bundles. The main result says that a right invariant semiflow on a fiber bundle is dispersive on the base space if and only if there is no almost periodic point and the semiflow is dispersive on the total space. A special result states that linear semiflows on vector bundles are not dispersive.


Author(s):  
Naresh Kumar Gandham ◽  
Hong Zhou

Helical compression springs are used to resist compressive forces or store energy in push mode. They are found in many applications that include automotive, aerospace and medical devices. The common configuration of helical compression springs is straight cylindrical shape that has constant coil diameter, constant pitch and constant spring rate. Unlike cylindrical helical compression springs, concave helical compression springs have a larger diameter at each end and a smaller diameter in the middle of the spring. The variable coil diameter enables them to produce desired load deflection characteristics, reduce solid height, buckling and surging, and keep them centered on a larger diameter hole. The unique features of concave helical compression springs also raise their synthesis challenges. In this paper, a method is introduced to synthesize concave helical compression springs. The variable coil diameter of a concave helical compression spring is described by a spline curve. A cylinder with variable diameter is generated by revolving the spline curve on spring axis. The concave helical compression spring is then modeled by wrapping a spring wire on the variable diameter cylinder. The synthesis of a concave helical compression spring is systemized as the optimization of the geometric control parameters of its wrapped spring wire. A synthesis example is presented in the paper to verify the effectiveness and demonstrate the procedure of the introduced method.


2013 ◽  
Vol 838-841 ◽  
pp. 2648-2653
Author(s):  
Zhong Bin Liu ◽  
Huan Wang ◽  
Juan Tang

In the paper, taking the particles suspension for filtered object, the effect of the long fiber bundles bulk density on filtration efficiency was studied through the filtration experiments with the designed experimental equipment. And combining with the filtering model of long fiber bundle filter to do fluid analysis, the result show that, for the filtering velocity is 72m / h, in the filtration efficiency, filtration cycle, backwashing and other aspects of comprehensive performance of long fiber high efficient filter are best when the packed density is 73kg/m3.


2016 ◽  
Vol 87 (11) ◽  
pp. 1387-1393 ◽  
Author(s):  
Tatsuya Ishikawa ◽  
KyoungHou Kim ◽  
Yutaka Ohkoshi

In the needle-punching process, the barbs of a needle catch fibers and orient them along the thickness direction of the fabric. The oriented fibers form a pillar-shaped fiber bundle, which acts as a bonding point of the fabric. The structure of the pillar-shaped fiber bundle thus governs the mechanical properties of needle-punched nonwoven fabric, and both are largely affected by the needle-punching conditions. However, the three-dimensional structure of pillar-shaped fiber bundles and their development under different needle-punching conditions have not been revealed. In the present study, we visualized the three-dimensional structure of a pillar-shaped fiber bundle in needle-punched nonwoven fabric, employing X-ray micro-computed tomography (XCT) on the basis of the difference in the X-ray absorption coefficient between polyethylene terephthalate (PET) and polyethylene fibers. For a material density ratio of less than 1.4 and PET fibers having a diameter of 40 µm, the pillar-shaped bundles of PET fibers were visualized by erasing 20-µm polyethylene fibers in XCT images. Furthermore, we investigated the effects of the penetration depth of the needle on the development of pillar-shaped fiber bundles. The number of fibers constituting a pillar largely increased at a penetration depth of 19.0 mm, and pillars protruded from the bottom surface of the fabric and formed a stitch structure. The XCT applied in this study is thus effective in analyzing the structure of pillar-shaped fiber bundles quantitatively without affecting the structure of the nonwoven fabric.


Sign in / Sign up

Export Citation Format

Share Document