Low Velocity Impact Testing of Laminated Carbon Fiber/Carbon Nanotube Composites

Author(s):  
Jake E. Christoph ◽  
Colin M. Gregg ◽  
Jordan R. Raney ◽  
David A. Jack

Carbon fiber laminated thermoset composites have become the industry standard for applications dictating a high strength-to-weight ratio. However, the brittle nature of the carbon fiber composite structure limits its energy dissipation characteristics, often leading to catastrophic failure under low energy impact loadings. This research examines the potential effects of including vertically aligned multi-walled carbon nanotube forests within a layered laminate structure with the goal being to increase the energy dissipation of the structure with attention given to the increase in the aerial density as a result of including the insert. These nanotube forests are of interest due to their broader application in coupled scenarios requiring tenability of structural, thermal and electrical properties. These nanotube forests have unique energy dissipative effects due to their hierarchical architecture (see e.g., Dario et al. (2006), Zeng et al. (2010) and Raney et al. (2011)). We synthesize vertically aligned nanotubes (VACNTs) on a single crystalline silicon wafer. After separation with the wafer, the VACNTs are placed within a carbon fiber laminated structure prior to resin infusion using vacuum assisted resin transfer molding (VARTM). Drop tower tests similar to ASTM D7136 are performed on carbon fiber laminates, carbon fiber laminates with nanotube forests, and carbon fiber laminates with several alternative materials. Results show an improved damage tolerance of the laminate with each of the investigated inserts, with the CNT system showing an increase of 13% in mean peak force. These results show a similar improvement to the alternative inserts while maintaining the potential for their broader application as a multifunctional material.

2014 ◽  
Vol 896 ◽  
pp. 574-577 ◽  
Author(s):  
Miftahul Anwar ◽  
Indro Cahyono Sukmaji ◽  
Wisnu R. Wijang ◽  
Kuncoro Diharjo

In the present work, we study how to improve mechanical properties of carbon fiber reinforced plastics (CFRP) in order to increase crashworthiness probability. Experimentally, hybrid carbon /glass fiber composite was made in order to get higher mechanical properties. As a results, with increasing carbon fiber volume fraction (% vol.), tensile strength and flexural strength of the composite are increased. Simulation of impact testing is also performed using data properties taken from the experiment with variation of impact forces on front bumper structure. By varying external load to the bumper, the result shows that higher thickness of hybrid carbon/glass fiber composite has always smaller stress values than thinner one. On the other hand, the displacement of hybrid carbon/glass car bumper increases linearly with increasing external load.


Author(s):  
Nicholas Candelino ◽  
Nader Jalili

Vertically-aligned carbon nanotube (VACNT) pads have recently received widespread attention for use as contact surfaces in material handling processes that involve the transfer of bare silicon wafers. Such processes will benefit from the strong friction force interactions and minimal adhesion force offered by these pads, allowing the wafer to be picked up, carried, and quickly placed, without encountering problems which may arise due to excessive adhesive forces. Despite these benefits, practical implementation has been hindered because VACNTs have nonlinear mechanical characteristics which are still not well understood. Consequently, significant attention has been devoted to fully understand and determine the behaviors associated with their nonlinear dynamic mechanical properties. Along this line, several experimental techniques are applied in this paper to further develop a comprehensive understanding of the mechanical behavior of these pads under compressive loading. It is important to note that the samples used in this testing are not standard VACNTs, but have been grown separately from the final substrate on which they are mounted during testing. After growth, the samples are turned upside-down and fixed so that the bottom ends of all VACNTs are planar and present an ultra-flat top surface for contact during manipulation. The tests performed in this research include a low energy impact test and position controlled load-displacement testing with both constant and sinusoidal velocity loading and unloading. Through these testing procedures, the dependencies of the VACNT material properties to compression depth and displacement rate are observed and an attempt is made to incorporate them into a continuous model. For this, the results from the low energy impact testing provide grounds to state the nature of the nonlinear behavior in our VACNTs. By interrogating the available data from each testing technique, a combination of information provided by the theoretical energy balance and the identified coefficients from the Levenberg-Marquardt curve-fitting algorithm is then applied to generate a parametrized phenomenological model of the VACNT pad behavior. The proposed identified model is continuous and reasonably accounts for the overall material behavior as seen in the experimental data. The validity of this model is shown by means of normalized vector correlation of over 99% between the results of the numerical simulations and the existing experimental data. The material behaviors observed in this research qualitatively support those of several earlier investigators who have previously recognized the complex dissipative behavior of VACNTs. The proposed work itself paves the road for developing a useful engineering model of VACNT pad dynamics which will enable their introduction to mechanical applications in industry.


2011 ◽  
Vol 687 ◽  
pp. 158-162 ◽  
Author(s):  
Qi Jiang ◽  
Rong Yang ◽  
Guang Gang Fu ◽  
De Yu Xie ◽  
Bin Huang ◽  
...  

Carbon nanotube (CNT) / carbon fiber (CF) composite was prepared by growing CNT in situ on the CF surface with catalytic chemical vapor deposition. The morphology of the obtained composite was characterized by the scanning electron microscopy. The results show that the CNT is trimly and equably grown on the CF surface. The obtained CNT/CF composite is covered with a layer of nickel (Ni) as a current collection on one side of the composite through the spray method. Then, the obtained materials were assembled to electrochemical super capacitors to characterize their electrochemical performances. The results show that the specific capacitance of the composite could be up to 105.4 F•g-1(organic electrolyte), which is much higher than those of the pure CNT and the CF (about 25.0 and 62.2F•g-1, respectively). These experimental results show that CNT grown in situ on the CF surface is a simple and feasible method to enhance the composite electrochemical performances.


2011 ◽  
Vol 194-196 ◽  
pp. 117-120 ◽  
Author(s):  
Xai Mei Lu ◽  
Yun Fei Ma ◽  
Shi Xun Wang

In this paper, low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures are investigated experimentally and numerically. Low-velocity impact tests and residual tensile strength tests are simulated by the FE (finite element) software, ABAQUS/Explicit and its subroutine (VUMAT). In order to give more detailed description about the impact damage of the structure and improve modeling accuracy, multi-steps analysis method is employed to simulate impact process and residual tensile strength test in one analysis model. The calculation results computed by the FE model have been compared to the value of experiments, the difference of impact process simulation is about 3.3% and that of tensile strength test simulation is about 12.9%. The calculation error of computation model is acceptable, since unavoidable damage could be introduced in the courses of manufacture, processing and transportation of composite materials, and these damages are determinated difficultly in the computation programs. Next, the degradation tendency chart of residual tensile strength and impact energy threshold Uo of carbon fiber composite lattice core sandwich structures are obtained by the computation value of residual tensile strength after impacted with different impact energy. Previously, this threshold can only be obtained by experiment tests. After the contact force which is bigger than the threshold Uo impact on the sandwich structures, the residual tensile strength of structures are degraded greatly. This conclusion is significant for the design and application of carbon fiber composite lattice core sandwich structures.


RSC Advances ◽  
2019 ◽  
Vol 9 (57) ◽  
pp. 33117-33123 ◽  
Author(s):  
Yi-Hung Liu ◽  
Heng-Han Lin ◽  
Tsung-Yu Tsai ◽  
Chun-Han Hsu

A binder-free CNT/CF composite electrode is developed via electrophoretic deposition, offering favorable electrochemical performances and stability as a self-standing lithium-ion battery anode.


2016 ◽  
Vol 23 (6) ◽  
pp. 699-710 ◽  
Author(s):  
Yucheng Zhong ◽  
Sunil Chandrakant Joshi

AbstractThe effects of hygrothermal conditioning and moisture on the impact resistance of carbon fiber/epoxy composite laminates were investigated. Specimens were fabricated from carbon fiber/epoxy woven prepreg materials. The fabricated specimens were either immersed in water at 80°C or subjected to hot/wet (at 80°C in water for 12 h) to cold/dry (at -30°C in a freezer for 12 h) cyclic hygrothermal conditions, which resulted in different moisture contents inside the laminates. It was found that the absorbed moisture did not migrate out from composite materials at -30°C. Neither of the hygrothermal conditions in this study had detrimental effects on the microstructure of the laminates. Low-velocity impact testing was subsequently conducted on the conditioned specimens. When attacked by the same level of impact energy, laminates with different moisture levels experienced different levels of impact damage. Moisture significantly alleviated the extent of damage in carbon fiber/epoxy woven laminates. The elastic response of the laminate under impact was improved after hygrothermal conditioning. The mechanism behind the improved impact resistance after absorbing moisture was proposed and deliberated.


Sign in / Sign up

Export Citation Format

Share Document