A Coupled Temperature-Displacement Numerical Analysis of Hydraulic Press Workspace

Author(s):  
Jakub Jirasko ◽  
Antonin Max ◽  
Radek Kottner

The analysis is performed on a hydraulic press which is intended for use in the automotive industry and is a part of a production line. The final phase of manufacture of interior and acoustic parts takes place in this press. These interior and acoustic parts are made of sandwich fabric which is inserted into the heated mould of the press and by treatment with a defined pressure (or, more precisely, a defined compression) and temperature, it is formed into its final shape. This press has a frame with four columns and it is not preloaded. Two double acting hydraulic cylinders placed on an upper cross beam exert the compressive force. Due to continuously increasing demands on the accuracy and quality of products not only in the automotive industry, it is necessary to ensure compliance with the accuracy of certain values of machine operation. Especially in this case, the value of accuracy substantially depends on the clamping plates of the press, for which a certain value of flatness is required, both at room temperature and at elevated temperatures. To achieve this accuracy, it is necessary to guarantee sufficient stiffness of the machine to resist the pressing force with the smallest deformation possible. Another crucial factor affecting the accuracy of the machine is heating of the heated clamping plates. Unequal heating of parts of the frame causes additional deformation that has to be quantified and eliminated. The main aim was to verify the design of the press by numerical computation and gather knowledge for modifying the topological design of the press so that it fulfils the required customer parameters of flatness and parallelism for different types of loading. A computational model of the press was created for the numerical solution of a coupled temperature-displacement numerical analysis. The analysis was performed using the finite element method in Abaqus software. The press is symmetrical in two orthogonal planes and the load of the press is considered to be centric. On the basis of these two factors it was possible to carry out the analysis by considering only a quarter of the press. The analysis was used to investigate the effects of static and combined loads from the pressing force and heat on the press. The influence of a cooling circuit located in the press frame for the reduction of frame deformation (and deformation of clamping plates) was investigated. Contacts were defined among individual parts to ensure the computational model had characteristics as close as possible to the real press. The analysis was solved as stationary, on the basis that the cooling of the tool between individual pressing cycles is negligible. The insulating plates are made of a particulate composite material which was considered to have isotropic properties depending on the temperature. For strength evaluation of composite materials all individual components of the stress tensor were examined according to the maximum stress criterion. Hook’s law was considered to be valid for the metallic materials. Von Mises criterion was used to evaluate the strength of the metallic materials. The geometry of the press was discretized using 3D linear thermally coupled brick elements with 8 nodes and full integration (C3D8T). There were approximately 174,000 elements in total. Design procedures for designing a press frame with higher work accuracy (flatness) were proposed with the example of the simplified model of the press table. With these methods it is possible to achieve times higher accuracy than is achieved with conventional method.

Author(s):  
Tomas Keckstein ◽  
Jakub Jirasko ◽  
Radek Kottner

A curing press is used in the final phase of tire manufacture. A tire semi product is placed into the curing press mold and a specific pressure and temperature gives it its final shape and final mechanical properties. There are many types of curing presses; this particular press is mechanical and the pressing force is exerted by an eccentric mechanism. The size of this press allows production of tires for trucks and medium-sized tractors. The basic demands placed on this type of press include tightness of the parts which are exposed to pressure from the heating medium. This paper mainly focuses on the tightness of the vulcanizing chamber and the tightness of the mold in which the semi product of the tire is inserted. Leakage of the vulcanizing chamber may cause leakage of the heating medium which could result in injury to the machine operator. Leakage of the mold causes an overflow of rubber into the parting plane, which may result in the production of rejects. To ensure the tightness of both these components, it is necessary to create sufficient pressure between the individual components. The value of the compressive force depends on the setting of the overlap of these parts, which depends on the stiffness of the individual parts and on the force exerted from the pressure of the heating medium that acts on these parts. Finite element method (FEM) analysis of this problem was performed using Abaqus software. A computational model of the curing press was created for this numerical analysis. The geometry of the press is symmetrical and the load is centric, therefore, only half of the press was modelled. The aim of this analysis was to find the most suitable settings for the overlap of the mold (independent variable) and the overlap of the chamber (dependent variable) which ensure the smallest possible leakage of the mold and an uninterrupted contact surface between the sealing and the upper part of the chamber. The sealing of the chamber is made from rubber which was modelled for the analysis as a five term generalized Mooney-Rivlin model, also known as the James-Green-Simpson model. This model assumes hyperelastic behavior with incompressibility. The insulating plates are made of a particulate composite which was considered to be linear with isotropic properties. For strength evaluation of the composite materials, all individual components of the stress tensor were investigated according to the maximum stress criterion. Hook’s law was considered to be valid for all the metallic materials. The Von Mises criterion was used to evaluate the strength of the metallic materials. The geometry of the press was discretized using 3D linear elements with 8 nodes and with reduced integration (C3D8R). The geometry of the rubber sealing was discretized using hybrid 3D linear elements with 8 nodes and with reduced integration (C3D8RH). The overall number of elements was approximately 97,000. Calculation model enabled to compute the best overlap setting of the chamber and the mold. This setting ensures their tightness. Effect of the setting to a stress in a press was also studied and the values of the stress were in a permitted range.


2021 ◽  
pp. 50-60
Author(s):  
A.A. Antsifirov ◽  
V.A. Krivoshein

The research presented in the article is devoted to the selection of the electric motor of the hydraulic press drive with a nominal force of 5MN. The article presents the main characteristics and the description of the press operation using the means of mechanization of the technological process of pressure treatment. Using the Deform-3D software package, the process of stamping the crosspiece of the ZIL-130 cardan shaft was simulated. Based on the presented hydraulic scheme of the press, its topological model was formed in the PA-9 software package. The deformation force obtained in the course of modeling the technological process of stamping was used in the topological model of the press. Using a tabular cyclogram, the sequence of actuation of the end switches and hydraulic distributors during the stamping process is shown. In the article, two variants of engine operation were analyzed. Based on the results of the conducted research, it is necessary to focus on the second version of the 55 kW engine, the operation of which will provide the required characteristics of the hydraulic drive of the press, which in turn will allow for technological stamping operations. The simulation tools allow providing estimated information when selecting the necessary tools to ensure the optimal characteristics of hydraulic press drives. The article considered the variation of electric motors that differ from each other in nominal characteristics, with constant characteristics of the pump. For more accurate estimates of energy savings during the operation of the hydraulic drive, it is necessary to vary the characteristics of the pump in the simulation, and the best option is to form an experiment planning matrix when combining the characteristics of the electric motor and the hydraulic pump. This approach ultimately allows forming a function for which one can select a hydraulic drive from existing brands of electric motors and hydraulic pumps for presses of the corresponding range of nominal force.


Author(s):  
K.O. Kobzev ◽  
◽  
S.A. Vyalov ◽  
E.S. Bozhko ◽  
I.A. Zolotuhina ◽  
...  

This article deals with the problem of operating conditions of guide moving crossbars of hydraulic presses. Based on the study of hydraulic press operation processes, the need to develop and implement measures to ensure reliable and trouble-free operation of the press was identified. The conclusion justifies the idea that if these technical solutions are implemented, the service life of hydraulic presses will increase


2013 ◽  
Vol 397-400 ◽  
pp. 157-161
Author(s):  
Wei Wei Zhang ◽  
Xiao Song Wang ◽  
Shi Jian Yuan ◽  
Zhong Ren Wang

For a cylinder-beam integrated hydraulic press (CBIHP), the hydraulic cylinder is also functioned as an upper beam. It is the key structural component that outputs the driving force to forge parts. Compared with the traditional three-beam and four-column hydraulic press which has a cylindrical hydraulic cylinder, the structure and force distribution are significantly different for CBIHP. It is able to have higher nominal force and larger section of plunger which the pressure is applied on when the contour geometric dimension is the same. Also, CBIHP has lighter weight and larger section modulus when the nominal force is the same than the traditional hydraulic press. Finally, a 6300KN cylinder-beam integrated hydraulic press, which is the first CBIHP in the world and designed by Harbin Institute of Technology (HIT) in 2012, is also introduced in this paper. It can be seen from the results of numerical simulation for the CBIHP that both of the stresses and displacements on the press in the loading process are allowable.


1993 ◽  
Vol 141 ◽  
pp. 196-198
Author(s):  
Weihong Song ◽  
Guoxiang Ai

AbstractAdopting the computational model of papers I and II (Song et al. 1990, 1992) we have found that for a better fit of the center of the Fe I 5324.19 Å line, the effect of turbulent Doppler broadening has to be taken into account. Through theoretical and numerical analysis we conclude that the square root of the modulus of Stokes Q and U is an appropiate observational parameter to represent the transverse magnetic field, since it is approximately linearly proportional to the strength of the transverse magnetic field for suitable positions of the filter passband.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1078-1082 ◽  
Author(s):  
Yang Yang Lv ◽  
Ling Feng Zhang

Magnesium alloy as a green material in the 21st century, because of its excellent physical and mechanical properties of metallic materials as an ideal in the automotive industry, electronic industry and aviation, aerospace and other industries[1]. However, poor corrosion resistance of magnesium alloys become an important issue hinder application of magnesium alloys[2]. So magnesium alloy corrosion problems and the current status of research paper reviews several magnesium alloy protection methods at home and abroad, and also highlighted with our latest laser shock (LSP) study of AZ91 magnesium alloy at high strain rates of corrosion resistance results.


2014 ◽  
Vol 1063 ◽  
pp. 232-236 ◽  
Author(s):  
Jia Zhou ◽  
Ming Tu Ma

EuroCarBody, offer the most important forum for defining and discussing the state of the art in modern series car body engineering. The present paper concerns the materials of press hardened steels and its’ manufacturing technology (Hot stamping) applied on vehicle on EuroCarBody from 2009 to 2013 through presentations and benchmark datas. The using percentage of press hardening steels (PHS) on body in white (BIW) are summarized and analyzied. It can be noted that the number and weight of BIW parts using of press hardening steels are increasing from 2009 to 2013, some kind of vehicle, such as Audi A3, the using percentage of PHS reaches 21.6%. The press hardening steels have started used on commercial vehicle from EuroCarBody 2013. More and more new technologies applied on hot stamping processing, such as Joule heating for hot stamping, Hot-form-process partial tempering, Tailor Rolled Blank (TRB) technolgy, etc. With the developing of the automotive industry, more and more hot forming parts will be applied on vehicles in the future.


Sign in / Sign up

Export Citation Format

Share Document