Numerical analysis of thin steel plates loaded in shear at non-uniform elevated temperatures

2014 ◽  
Vol 97 ◽  
pp. 105-113 ◽  
Author(s):  
Mikko Salminen ◽  
Markku Heinisuo
2005 ◽  
Vol 8 (3) ◽  
pp. 247-257 ◽  
Author(s):  
Y. Fukumoto ◽  
T. Takaku ◽  
T. Aoki ◽  
K. A. S. Susantha

This paper presents the innovative use of hot-rolled thickness-tapered mill products, longitudinally profiled (LP) plates, for the seismic performance of bridge bents of single and portal framed piers. The study involves the inelastic cyclic testing and numerical analysis of tested beam-columns and portal frames in order to evaluate the effects of tapering ratios of LP plates, penetration of yielding, and number of locally buckled panels on their structural ductility. A structural design method is proposed for the portal frames having LP panels under cyclic loadings.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 220 ◽  
Author(s):  
Grégori Troina ◽  
Marcelo Cunha ◽  
Vinícius Pinto ◽  
Luiz Rocha ◽  
Elizaldo dos Santos ◽  
...  

Stiffened thin steel plates are structures widely employed in aeronautical, civil, naval, and offshore engineering. Considering a practical application where a transverse uniform load acts on a simply supported stiffened steel plate, an approach associating computational modeling, Constructal Design method, and Exhaustive Search technique was employed aiming to minimize the central deflections of these plates. To do so, a non-stiffened plate was adopted as reference from which all studied stiffened plate’s geometries were originated by the transformation of a certain amount of steel of its thickness into longitudinal and transverse stiffeners. Different values for the stiffeners volume fraction (φ) were analyzed, representing the ratio between the volume of the stiffeners’ material and the total volume of the reference plate. Besides, the number of longitudinal (Nls) and transverse (Nts) stiffeners and the aspect ratio of stiffeners shape (hs/ts, being hs and ts, respectively, the height and thickness of stiffeners) were considered as degrees of freedom. The optimized plates were determined for all studied φ values and showed a deflection reduction of over 90% in comparison with the reference plate. Lastly, the influence of the φ parameter regarding the optimized plates was evaluated defining a configuration with the best structural performance among all analyzed cases.


Author(s):  
Jakub Jirasko ◽  
Antonin Max ◽  
Radek Kottner

The analysis is performed on a hydraulic press which is intended for use in the automotive industry and is a part of a production line. The final phase of manufacture of interior and acoustic parts takes place in this press. These interior and acoustic parts are made of sandwich fabric which is inserted into the heated mould of the press and by treatment with a defined pressure (or, more precisely, a defined compression) and temperature, it is formed into its final shape. This press has a frame with four columns and it is not preloaded. Two double acting hydraulic cylinders placed on an upper cross beam exert the compressive force. Due to continuously increasing demands on the accuracy and quality of products not only in the automotive industry, it is necessary to ensure compliance with the accuracy of certain values of machine operation. Especially in this case, the value of accuracy substantially depends on the clamping plates of the press, for which a certain value of flatness is required, both at room temperature and at elevated temperatures. To achieve this accuracy, it is necessary to guarantee sufficient stiffness of the machine to resist the pressing force with the smallest deformation possible. Another crucial factor affecting the accuracy of the machine is heating of the heated clamping plates. Unequal heating of parts of the frame causes additional deformation that has to be quantified and eliminated. The main aim was to verify the design of the press by numerical computation and gather knowledge for modifying the topological design of the press so that it fulfils the required customer parameters of flatness and parallelism for different types of loading. A computational model of the press was created for the numerical solution of a coupled temperature-displacement numerical analysis. The analysis was performed using the finite element method in Abaqus software. The press is symmetrical in two orthogonal planes and the load of the press is considered to be centric. On the basis of these two factors it was possible to carry out the analysis by considering only a quarter of the press. The analysis was used to investigate the effects of static and combined loads from the pressing force and heat on the press. The influence of a cooling circuit located in the press frame for the reduction of frame deformation (and deformation of clamping plates) was investigated. Contacts were defined among individual parts to ensure the computational model had characteristics as close as possible to the real press. The analysis was solved as stationary, on the basis that the cooling of the tool between individual pressing cycles is negligible. The insulating plates are made of a particulate composite material which was considered to have isotropic properties depending on the temperature. For strength evaluation of composite materials all individual components of the stress tensor were examined according to the maximum stress criterion. Hook’s law was considered to be valid for the metallic materials. Von Mises criterion was used to evaluate the strength of the metallic materials. The geometry of the press was discretized using 3D linear thermally coupled brick elements with 8 nodes and full integration (C3D8T). There were approximately 174,000 elements in total. Design procedures for designing a press frame with higher work accuracy (flatness) were proposed with the example of the simplified model of the press table. With these methods it is possible to achieve times higher accuracy than is achieved with conventional method.


2015 ◽  
Vol 22 (5) ◽  
pp. 585-596 ◽  
Author(s):  
Damian BEBEN ◽  
Adam STRYCZEK

The paper presents a numerical analysis of corrugated steel plate (CSP) bridge with reinforced concrete (RC) relieving slab under static loads. Calculations were made based on the finite element method using Abaqus software. Two computation models were used; in the first one, RC slab was used, and the other was without it. The effect of RC slab to deformations of CSP shell was determined. Comparing the computational results from two numerical models, it can be concluded that when the relieving slab is applied, substantial reductions in displacements, stresses, bending mo­ments and axial thrusts are achieved. Relative reductions of displacements were in the range of 53–66%, and stresses of 73–82%. Maximum displacements and bending moments were obtained at the shell crown, and maximum stresses and axial thrusts at the quarter points. The calculation results were also compared to the values from experimental tests. The course of computed displacements and stresses is similar to those obtained from experimental tests, although the absolute values were generally higher than the measured ones. Results of numerical analyses can be useful for bridge engineering, with particular regard to bridges and culverts made from corrugated steel plates for the range of necessity of using additional relieving elements.


2018 ◽  
Vol 18 (1) ◽  
pp. 337-348
Author(s):  
Shahabeddin Torabian ◽  
Feng Xiao ◽  
Richard B. Haws ◽  
Benjamin W. Schafer
Keyword(s):  

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4257 ◽  
Author(s):  
Min Jae Park ◽  
Jeong Ki Min ◽  
Jaehoon Bae ◽  
Young K. Ju

Hybrid floors infilled with polymeric materials between two steel plates were developed as a prefabricated floor system in the construction industry. However, the floor’s fire resistance performance has not been investigated. To evaluate this, fire tests suggested by the Korean Standards should be performed. As these tests are costly and time consuming, the number of variables were limited. However, many variables can be investigated in other ways such as furnace tests and finite element analysis (FEA) with less cost and time. In this study, furnace tests on heated surface areas smaller than 1 m2 were conducted to investigate the thermal behavior of the hybrid floor at elevated temperatures. To obtain the reliability of the proposed thermal behavior analytical (TBA) model, verifications were conducted by FEAs. Thermal contact conductance including interfacial thermal properties between two materials was adopted in the TBA model, and the values at elevated temperatures were suggested based on thermo-gravimetric analyses results and verified by FEA. Errors between the tests and TBA model indicated that the model was adequate in predicting the temperature distribution in small-scale hybrids. Furthermore, larger furnace tests and analysis results were compared to verify the TBA model’s application to different sized hybrid floors.


Sign in / Sign up

Export Citation Format

Share Document