Effect of Cutting Conditions on Dimensional Accuracy and Surface Roughness in Traditional Milling of Steel

Author(s):  
Brian Stringer ◽  
Rui Liu ◽  
Alfonso Fuentes Aznar ◽  
Patricia Iglesias

Gear milling is one of the common gear manufacturing processes. In gear milling, the cutting edge of the cutting tool has an identical profile with the profile between gear teeth, and the cutting tool travels along the axial direction of the gear blank to produce the gear tooth by tooth. Due to the high requirements about the dimensional accuracy and the surface roughness during the gear manufacturing process, it is very crucial to understand the influences of cutting conditions on those requirements to improve the quality of the product and increase the production rate. In this study, a machined gear blank made from 1018 cold-rolled steel was subjected to variable speed and feed-rates in a traditional milling operation using a standard gear-milling cutter. The effect of the variable speed and feed-rates were analyzed by measuring the total lead (helix) error, total profile (involute) error, and surface finish of each gear tooth subjected to the variable cutting conditions. The objective is to experimentally investigate the correlation between the cutting conditions, i.e. cutting speed and feed, with the accuracy and quality of the machined surface during the gear milling process.

1970 ◽  
Vol 2 (1) ◽  
Author(s):  
A.K.M.N. Amin, M.A. Rizal, and M. Razman

Machine tool chatter is a dynamic instability of the cutting process. Chatter results in poor part surface finish, damaged cutting tool, and an irritating and unacceptable noise. Exten¬sive research has been undertaken to study the mechanisms of chatter formation. Efforts have been also made to prevent the occurrence of chatter vibration. Even though some progress have been made, fundamental studies on the mechanics of metal cutting are necessary to achieve chatter free operation of CNC machine tools to maintain their smooth operating cycle. The same is also true for Vertical Machining Centres (VMC), which operate at high cutting speeds and are capable of offering high metal removal rates. The present work deals with the effect of work materials, cutting conditions and diameter of end mill cutters on the frequency-amplitude characteristics of chatter and on machined surface roughness. Vibration data were recorded using an experimental rig consisting of KISTLER 3-component dynamometer model 9257B, amplifier, scope meters and a PC.  Three different types of vibrations were observed. The first type was a low frequency vibration, associated with the interrupted nature of end mill operation. The second type of vibration was associated with the instability of the chip formation process and the third type was due to chatter. The frequency of the last type remained practically unchanged over a wide range of cutting speed.  It was further observed that chip-tool contact processes had considerable effect on the roughness of the machined surface.Key Words: Chatter, Cutting Conditions, Stable Cutting, Surface Roughness.


2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Syed Adnan Ahmed ◽  
Jeong Hoon Ko ◽  
Sathyan Subbiah ◽  
Swee Hock Yeo

This paper describes a new method of microtexture generation in precision machining through self-excited vibrations of a diamond cutting tool. Conventionally, a cutting tool vibration or chatter is detrimental to the quality of the machined surface. In this study, an attempt is made to use the cutting tool's self-excited vibration during a cutting beneficially to generate microtextures. This approach is named as “controlled chatter machining (CCM).” Modal analysis is first performed to study the dynamic behavior of the cutting tool. Turning processes are then conducted by varying the tool holder length as a means to control vibration. The experimental results indicate that the self-excited diamond cutting tool can generate microtextures of various shapes, which depend on the cutting tool shank, cutting speed, feed, and cutting depth. The potential application of this proposed technique is to create microtextures in microchannels and microcavities to be used in mass and heat transfer applications.


2014 ◽  
Vol 657 ◽  
pp. 53-57 ◽  
Author(s):  
Sándor Ravai Nagy ◽  
Ioan Paşca ◽  
Mircea Lobonțiu ◽  
Mihai Banica

Machining of Complex Concave or Convex Surfaces Requires the Use of Ball End Milling Cutters. Obtaining the Expected Surface Quality Compete Various Technological Factors which should be Taken into Account. Following the Machining of the Surface with Different Inclination Angles between the Cutting Tool Axes and the Machined Surface, Significant Changes of the Surface Roughness have been Observed. Based on the Tests Performed, we can Determine the Range of the Tool Inclination Angle, which is the Best for the Surface Quality. we have also Made a Correlation between the Cutting Speeds, Inclination Angle of the Cutting Tool Toward the Machined Surface for an Obtained Surface Quality. the Presented Results are Based on Experimental Research in Industrial Conditions by Using CNC Machine Tools with 5 Axes. the Tests have been Performed on the C45 Material, Heat Treated to 34HRC.


2021 ◽  
Author(s):  
Raqibah Najwa Mudzaffar ◽  
Mohamad Faiz Izzat Bahauddin ◽  
Hanisah Manshor ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
...  

Abstract The zirconia toughened alumina enhanced with titania and chromia (ZTA-TiO2-Cr2O3) ceramic cutting tool is a new cutting tool that possesses good hardness and fracture toughness. However, the performance of the ZTA-TiO2-Cr2O3 cutting tool continues to remain unknown and therefore requires further study. In this research, the wearing of the ZTA-TiO2-Cr2O3 cutting tool and the surface roughness of the machined surface of stainless steel 316L was investigated. The experiments were conducted where the cutting speeds range between 314 to 455 m/min, a feed rate from 0.1 to 0.15 mm/rev, and a depth of cut of 0.2 mm. A CNC lathe machine was utilised to conduct the turning operation for the experiment. Additionally, analysis of the flank wear and crater wear was undertaken using an optical microscope, while the chipping area was observed via scanning electron microscopy (SEM). The surface roughness of the machined surface was measured via portable surface roughness. The lowest value of flank wear, crater wear and surface roughness obtained are 0.044 mm, 0.45 mm2, and 0.50 µm, respectively at the highest cutting speed of 455 m/min and the highest feed rate of 0.15 mm/rev. The chipping area became smaller with the increase of feed rate from 0.10 to 0.15 mm/rev and larger when the feed rate decrease. This was due to the reduced vibrations at the higher spindle speed resulting in a more stable cutting operation, thereby reducing the value of tool wear, surface roughness, and the chipping area.


2011 ◽  
Vol 697-698 ◽  
pp. 125-128
Author(s):  
Shen Yung Lin ◽  
Y.H. Lin ◽  
M.S. Hsu

After the processing of a clock dial, the precision dimension and uniform distribution of the tool-trace pattern on the dial surface have a connection with luster image and attractiveness, which in turn would have an impact on the additional values and prices for a clock. Through a systematic investigation among the lathe structure, process parameter and cutting-tool geometry in advance, the total results indicated that the rigidity of the lathe structure and the precision of the slider movements are excellent and they had only a little effect on the surface-related quality for a dial face turning. Hence, the combination of process parameter and cutting-tool angle becomes more essential. End face turning simulation and experiment of a copper alloy were thus conducted in this paper, and the chip formation process and machined surface-related quality are investigated, respectively. The effects of cutting tool geometry and process parameter on the results of chip formation, surface rough, tool-trace pattern and luster uniformity are investigated, and these results are also compared with each other. The results show that when larger clearance and rake angles used in conjunction with a lower feed rate, no matter how much cutting speed was enhanced, the surface-related quality of a dial surface is not good. However, when these two larger angles used combined with a larger feed rate, the quality of a dial surface would slightly be improved. By using smaller clearance and rake angles along with the higher feed rate and cutting speed would obtain a better surface-related quality with uniform luster and attractiveness.


2018 ◽  
Vol 779 ◽  
pp. 153-158
Author(s):  
Phacharadit Paengchit ◽  
Charnnarong Saikaew

This work investigated the influences of cutting speed and feed rate on surface roughness in hard turning of AISI 4140 chromium molybdenum steel bar using mixed ceramic inserts Al2O3+TiC under dry condition for automotive industry applications. Turning experiments were conducted by varying cutting speed ranging from 150 to 220 m/min and feed rate ranging from 0.06 to 1 mm/rev. General factorial design was used to analyze the data set of surface roughness and determine statistically significant process factors based on analysis of variance results. The results showed that average surface roughness was significantly affected by feed rate and interaction between cutting speed and feed rate at the level of significance of 0.05. An optimal operating condition for hard turning of AISI 4140 with the ceramic cutting tool that produced a minimum machined surface roughness was obtained at cutting speed of 220 m/min and 0.06 mm/rev.


2017 ◽  
Vol 261 ◽  
pp. 215-220
Author(s):  
Martin Novák ◽  
Natasa Naprstkova

Machining of tool steels is often an important used technology. Products made from these materials are often used in mechanical engineering, and quality of workpiece surface roughness after machining respective grinding is one of the important parameters that to us speak about the quality of the machining process. The paper deals with the influence of cutting conditions when grinding bearing steel 100Cr (EN ISO) on machined surface roughness. This steel belongs to a group of bearing steels.


2011 ◽  
Vol 264-265 ◽  
pp. 1050-1055 ◽  
Author(s):  
Gusri Akhyar Ibrahim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd. Ghani

The great advancement in the development of carbide cutting tool with super-hard coating layers taken place in recent few decades, can improve the performance of cutting tool and machinability of titanium alloy. The turning parameters evaluated are cutting speed (55, 75, 95 m/min), feed rate (0.15, 0.25, 0.35 mm/rev), depth of cut (0.10, 0.15, 0.20 mm) and tool grade of PVD carbide tool. The results that tool life shows patterns of rapidly increase at the initial stage and gradually increased at the second stage and extremely increased at the final stage. The trend lines of surface roughness have are the surface roughness value is high at first machining after that regularly decreases. Work hardening of the deformed layer beneath machined surface caused higher hardness than the average hardness of the base material. However, the softening effect also occurred below the machined surface. Segmentation or serration at the chip edge was caused by high strain and pressure during machining.


2013 ◽  
Vol 581 ◽  
pp. 247-254 ◽  
Author(s):  
Martin Novák ◽  
Natasa Naprstkova

Machining of tool steels is often an important used technology. Products made from these materials are often used in mechanical engineering, and quality of workpiece surface roughness after machining respective grinding is one of the important parameters that to us speak about the quality of the machining process. The paper deals with the influence of cutting conditions when grinding tool steel X38CrMoV5 (EN ISO) on machined surface roughness.


2013 ◽  
Vol 702 ◽  
pp. 263-268 ◽  
Author(s):  
Katarina Monkova

The article deals with surface roughness characteristics of polyamide APA after the turning by tool with linear cutting edge. The experiment was centred on the obtaining of Ra and Rz dependences on both cutting speed and feed per revolution concurrently. Polyamide APA allows the production of very large structural and semi-structural parts for automotive and non-automotive applications including interior, exterior and under-the-hood applications. It also allows reducing the total cost of production, especially for lower volume parts. Therefore, the authors deals with the possibility to work this material. The special cutting tool was selected in regard to the author´s previous experiments. The surfaces of investigated metal samples, which were machined by the tool with linear cutting edge, achieved very good properties, so it was the reason for the using of this tool at the experiments presented in the article. Obtained values of surface roughness characteristics were worked up by means of regression analysis and according to the rules for statistical data processing. The results are arranged into the table and consequently into the graphical presentations. The shapes of chips at the machining within various working conditions are shown at the end of the article. Next experiments will be focused on the machining of other types materials with the same unconventional cutting tool and for the obtaining new data that characterize the machined surface.


Sign in / Sign up

Export Citation Format

Share Document