Evaluation of PVD-Inserts Performance and Surface Integrity when Turning Ti-6Al-4V ELI under Dry Machining

2011 ◽  
Vol 264-265 ◽  
pp. 1050-1055 ◽  
Author(s):  
Gusri Akhyar Ibrahim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd. Ghani

The great advancement in the development of carbide cutting tool with super-hard coating layers taken place in recent few decades, can improve the performance of cutting tool and machinability of titanium alloy. The turning parameters evaluated are cutting speed (55, 75, 95 m/min), feed rate (0.15, 0.25, 0.35 mm/rev), depth of cut (0.10, 0.15, 0.20 mm) and tool grade of PVD carbide tool. The results that tool life shows patterns of rapidly increase at the initial stage and gradually increased at the second stage and extremely increased at the final stage. The trend lines of surface roughness have are the surface roughness value is high at first machining after that regularly decreases. Work hardening of the deformed layer beneath machined surface caused higher hardness than the average hardness of the base material. However, the softening effect also occurred below the machined surface. Segmentation or serration at the chip edge was caused by high strain and pressure during machining.

2021 ◽  
Author(s):  
Raqibah Najwa Mudzaffar ◽  
Mohamad Faiz Izzat Bahauddin ◽  
Hanisah Manshor ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
...  

Abstract The zirconia toughened alumina enhanced with titania and chromia (ZTA-TiO2-Cr2O3) ceramic cutting tool is a new cutting tool that possesses good hardness and fracture toughness. However, the performance of the ZTA-TiO2-Cr2O3 cutting tool continues to remain unknown and therefore requires further study. In this research, the wearing of the ZTA-TiO2-Cr2O3 cutting tool and the surface roughness of the machined surface of stainless steel 316L was investigated. The experiments were conducted where the cutting speeds range between 314 to 455 m/min, a feed rate from 0.1 to 0.15 mm/rev, and a depth of cut of 0.2 mm. A CNC lathe machine was utilised to conduct the turning operation for the experiment. Additionally, analysis of the flank wear and crater wear was undertaken using an optical microscope, while the chipping area was observed via scanning electron microscopy (SEM). The surface roughness of the machined surface was measured via portable surface roughness. The lowest value of flank wear, crater wear and surface roughness obtained are 0.044 mm, 0.45 mm2, and 0.50 µm, respectively at the highest cutting speed of 455 m/min and the highest feed rate of 0.15 mm/rev. The chipping area became smaller with the increase of feed rate from 0.10 to 0.15 mm/rev and larger when the feed rate decrease. This was due to the reduced vibrations at the higher spindle speed resulting in a more stable cutting operation, thereby reducing the value of tool wear, surface roughness, and the chipping area.


INSIST ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 54
Author(s):  
Gusri Akhyar ◽  
Suryadiwansa Harun ◽  
Arinal Hamni

Abstract - Magnesium and magnesium alloys is one of materials that worldwide used on automotive components due to very good  strength to weight ratio, resistant to corrosion, lighter compare to steel materials. Other than that magnesium has an advantage in easy to form and good machinability.  Nevertheless, magnesium known as metal which is easy to burned because of magnesium has low melting point. To maintain magnesium from burning quickly when proses machining, it needs to use coolant or lubricant to reduce temperature. Using of coolant when machining process can reduce temperature on cutting tool and work piece material, while using of lubricant can reduce friction between the cutting tool and work piece mateial. However, using of coolant and lubricant can harm for the environment and also coolant difficult to destroyed. Therefore, an alternative method to reduce the temperature when machining of magnesium alloy is using  the rotary cutting tool system. In the rotary cutting tool system, the cutting tool has a time to experience cooling in the period time. Other than aspect of temperature, surface roughness values are representative of surface of quality of produced componens. In this research, surface roughness value of magnesium alloy of AZ31 observed in ranges of work piece cutting speed of  (Vw) 25, 50, 120, 160, 200 m/min, rotary cutting speed of (Vt) 25, 50, 75 m/min, feed rate of (f) 0,05  and 0,10 mm/rev, and depth of cut of 0.2 mm. The turning process was done by using two kinds of diameter of rotary cutting tools are 16 and 20 mm, and without applying of coolant. The results of the research showed that the minimum surface roughness value of machined surface was 0,62𝝻m by using insert with diameter of 16 mm, while the maximum surface roughness value of machined surface was 2,86 𝝻m by using insert with diameter of 20 mm. This result stated that the increase in the diameter of rotary cutting tool gives a significant effect on the produced surface roughness value. Factor of feed rate also gives a significant contribution on the surface roughness value of machined magnesium surface.  The increase in feed rate generated significantly surface roughness value as long as the trials experiments. The produced surface roughness values inversely proportional to the cutting speed of rotary cutting tool.Keywords - magnesium, rotary tool, surface roughness, turning. 


2017 ◽  
Vol 749 ◽  
pp. 107-110
Author(s):  
Yuta Masu ◽  
Tomohito Fukao ◽  
Taiga Yasuki ◽  
Masahiro Hagino ◽  
Takashi Inoue

The method of imparting ultrasonic vibration to the cutting tool is known to improve the shape accuracy and finished surface roughness. However, a uniform evaluation of this function in drilling has not been achieved, and the cutting process cannot be checked from the outside. The aim of this study is to investigate the cutting characteristics in deep hole drilling when an ultrasonic vibrator on the table of a machining center provides vibration with a frequency of 20 kHz to the work piece. The ultrasonic vibrations in this system reach the maximum amplitude in the center of the work material. We evaluated the change in finished surface roughness between the section where drilling starts to the point of maximum amplitude with ultrasonic vibration. The main cutting conditions are as follows: cutting speed (V) 12.6 (mm/min); feed rate (s) 30, 60 (mm/rev); depth of cut (t) = 32 (mm); work material, tool steel; cutting tool material, HSS; point angle (σ) 118 (°); and drill diameter (φ) 4 (mm). Lubricant powder was also added to clarify the cutting effect, and compared the condition in which there was no ultrasonic vibration. The results showed that surface roughness at the point of maximum amplitude was better than that with no vibration.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950081 ◽  
Author(s):  
CHUNHUI JI ◽  
SHUANGQIU SUN ◽  
BIN LIN ◽  
TIANYI SUI

This work performed molecular dynamic simulations to study the 2D profile and 3D surface topography in the nanometric cutting process. The least square mean method was used to model the evaluation criteria for the surface roughness at the nanometric scale. The result showed that the cutting speed was the most important factor influencing the spacing between the peaks, the sharpness of the peaks, and the randomness of the profile. The plastic deformation degree of the machined surface at the nanometric scale was significantly influenced by the cutting speed and depth of cut. The 2D and 3D surface roughness parameters exhibited a similar variation tendency, and the parameters Ra and Rq tended to increase gradually with an increase in the cutting speed and a decrease in the depth of cut. Finally, it is concluded that at the nanometric scale, the 3D surface roughness parameters could more accurately reflect the real surface characteristics than the 2D parameters.


Author(s):  
Zengqiang Wang ◽  
Zhanfei Zhang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Kunyang Lin ◽  
...  

Abstract High speed cutting (HSC) technology has the characteristics of high material removal rates and high machining precision. In order to study the relationships between chip morphology and machining surface characteristic in high speed cutting of superalloy Inconel718. High-speed orthogonal cutting experiment are carried out by used a high speed cutting device based on split Hopkinson pressure bar (SHPB). The specimen surfaces and collected chips were then detected with optical microscope, scanning electron microscope and three-dimensional surface profile measuring instrument. The results show that within the experimental parameters (cutting speed from 8–16m/s, depth of cut 0.1–0.5mm), the obtained chips are sawtooth chips and periodic micro-ripple appear on the machined surface. With the cutting speed increases, machining surface roughness is decreases from 1.4 to 0.99μm, and the amplitude of periodic ripples also decreases. With the cutting depth increases, the machining surface roughness increases from 0.96 to 5.12μm and surface topography becomes worse. With the increase of cutting speed and depth of cut, the chips are transform from continues sawtooth to sawtooth fragment. By comparing the frequency of surface ripples and sawtooth chips, it is found that they are highly consistent.


Author(s):  
O Kalantari ◽  
MM Fallah ◽  
F Jafarian ◽  
SR Hamzeloo

In laser-assisted machining (LAM), the laser source is focused on the workpiece as a thermal source and locally increases the workpiece temperature and makes the material soft ahead of the cutting tool so using this method, the machining forces are reduced, which causes improving the surface quality and cutting tool life. Machinability of advanced hard materials is significantly low and conventional methods do not work effectively. Therefore, utilizing an advanced method is inevitable. The product life and performance of complex parts of the leading industry depends on surface integrity. In this work, the surface integrity features including microhardness, grain size and surface roughness (Ra) and also the maximum cutting temperature were investigated experimentally in LAM of Ti-6Al-4V. According to the results, cutting speed has inverse effect on the effectiveness of LAM process because with increasing speed (15 to 63 m/min), temperature decreases (524 °C to 359 °C) and surface roughness increases (0.57 to 0.71 μm). Enhancing depth of cut and feed has direct effect on the process temperature, grain size, microhardness and surface roughness.


2020 ◽  
Vol 17 (2) ◽  
pp. 961-966
Author(s):  
Allina Abdullah ◽  
Afiqah Azman ◽  
B. M. Khirulrizwan

This research outlines an experimental study to determine the optimum parameter of cutting tool for the best surface roughness (Ra) of Aluminum Alloy (AA) 6063. For the experiment in this research, cutting parameters such as cutting speed, depth of cut and feed rate are used to identify the effect of both cutting tools which are tungsten carbide and cermet towards the surface roughness (Ra) of material AA6063. The machining operation involved to cut the material is turning process by using Computer Numerical Control (CNC) Lathe machine. The experimental design was designed by Full Factorial. The experiment that had been conducted by the researcher is 33 with 2 replications. The total number of the experiments that had been run is 54 runs for each cutting tool. Thus, the total number of experiments for both cutting tools is 108 runs. ANOVA analysis had been analyzed to identify the significant factor that affect the Ra result. The significant factors that affect the Ra result of AA6063 are feed rate and cutting speed. The researcher used main effect plot to determine the factor that most influenced the surface roughness of AA6063, the optimum condition of surface roughness and the optimum parameter of cutting tool. The factor that most influenced the surface roughness of AA6063 is feed rate. The optimum condition of surface roughness is at the feed rate of 0.05 mm/rev, cutting speed of 600 rpm and depth of cut of 0.10 mm. While the optimum parameter of cutting tool is cermet insert with the lowest value of surface roughness (Ra) result which is 0.650 μm.


2014 ◽  
Vol 657 ◽  
pp. 53-57 ◽  
Author(s):  
Sándor Ravai Nagy ◽  
Ioan Paşca ◽  
Mircea Lobonțiu ◽  
Mihai Banica

Machining of Complex Concave or Convex Surfaces Requires the Use of Ball End Milling Cutters. Obtaining the Expected Surface Quality Compete Various Technological Factors which should be Taken into Account. Following the Machining of the Surface with Different Inclination Angles between the Cutting Tool Axes and the Machined Surface, Significant Changes of the Surface Roughness have been Observed. Based on the Tests Performed, we can Determine the Range of the Tool Inclination Angle, which is the Best for the Surface Quality. we have also Made a Correlation between the Cutting Speeds, Inclination Angle of the Cutting Tool Toward the Machined Surface for an Obtained Surface Quality. the Presented Results are Based on Experimental Research in Industrial Conditions by Using CNC Machine Tools with 5 Axes. the Tests have been Performed on the C45 Material, Heat Treated to 34HRC.


2016 ◽  
Vol 16 ◽  
pp. 7-15 ◽  
Author(s):  
Nirmal Kumar Mandal ◽  
Tanmoy Roy

Abstract. Kinetic energy of a machining process is converted into heat energy. The generated heat at cutting tool and work piece interface has substantial impact on cutting tool life and quality of the work piece. On the other hand, development of advanced cutting tool materials, coatings and designs, along with a variety of strategies for lubrication, cooling and chip removal, make it possible to achieve the same or better surface quality with dry or Minimum Quantity Lubrication (MQL) machining than traditional wet machining. In addition, dry and MQL machining is more economical and environment friendly. In this work, 20 no. of experiments were carried out under dry machining conditions with different combinations of cutting speed, feed rate and depth of cut and corresponding cutting temperature and surface roughness are measured. The no. of experiments is determined through Design of Experiments (DOE). Nonlinear regression methodology is used to model the process using Response Surface Methodology (RSM). Multi-objective optimization is carried using Genetic Algorithm which ensures high productivity with good product quality.


Sign in / Sign up

Export Citation Format

Share Document