Measurement of Electrical Properties of Sickle Cells From Electrical Impedance of Cell Suspension

Author(s):  
Jia Liu ◽  
Yuhao Qiang ◽  
E. Du

Analysis of the electrical properties of a biological cell can provide useful information about its characteristic features, such as the intracellular composition, charge distribution and composition changes in cell membrane, as well as the extracellular environment. Electrical impedance spectroscopy of a cell suspension can be used to extract an average measure of the electrical properties of single cells. In sickle cell disease, the disease state of a sickle red blood cell is closely related to the intracellular hemoglobin composition and concentration. This study presents an electrical impedance measurement of sickle cell suspension with normal red blood cells as control. Electrical impedance spectra of cell suspensions are obtained in the range of 1000 Hz to 1MHz. Based on Maxwell’s mixture theory, average values of membrane capacitance and cytoplasm resistance of single cells are extracted for both normal and sickle blood samples. Comparing to traditional parallel-plate setup for cell suspension subjected to frequency sweep, this method requires low quantity of blood specimens and can be potentially valuable for patients that are already anemic.

HortScience ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 104-107 ◽  
Author(s):  
Phillipa J. Jackson ◽  
F. Roger Harker

Electrical impedance was used to determine the extent of tissue damage that occurred as a result of bruising of apple fruit (Malus ×domestica Borkh, cvs. Granny Smith and Splendour). Impedance measurements were made before and after bruising. Plots of reactance against resistance at 36 spot frequencies between 50 Hz and 1 MHz traced a semicircular arc, which contracted in magnitude after bruising. A number of characteristics of these curves were then related to bruise weight. The change in resistance that occurred as a result of fruit impact (ΔR50Hz) was the best predictor of bruise weight, with r2 values up to 0.71. Before bruising, resistance of fruit was higher in `Splendour' than in `Granny Smith' (P < 0.001), and at 0 °C than at 20 °C (P < 0.001), but was not influenced by fruit weight. The influence of apple cultivar and temperature on electrical impedance may cause difficulties when implementing these measurements in a commercial situation. However, further development of electrical impedance spectroscopy methodologies may result in convenient research techniques for assessing bruise weight without having to wait for browning of the flesh.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Pei-Ju Chao ◽  
Eng-Yen Huang ◽  
Kuo-Sheng Cheng ◽  
Yu-Jie Huang

Electrical impedance is one of the most frequently used parameters for characterizing material properties. The resistive and capacitive characteristics of tissue may be revealed by electrical impedance spectroscopy (EIS) as electrical biopsy. This technique could be used to monitor the sequelae after irradiation. In this study, rat intestinal tissues after irradiation were assessed by EIS system based on commercially available integrated circuits. The EIS results were fitted to a resistor-capacitor circuit model to determine the electrical properties of the tissue. The variations in the electrical characteristics of the tissue were compared to radiation injury score (RIS) by morphological and histological findings. The electrical properties, based on receiver operation curve (ROC) analysis, strongly reflected the histological changes with excellent diagnosis performance. The results of this study suggest that electrical biopsy reflects histological changes after irradiation. This approach may significantly augment the evaluation of tissue after irradiation. It could provide rapid results for decision making in monitoring radiation sequelae prospectively.


Author(s):  
Oliver Power ◽  
Adam Ziolek ◽  
Andreas Elmholdt Christensen ◽  
Andrei Pokatilov ◽  
Anca Nestor ◽  
...  

The core objective of EMPIR project 17RPT04 VersICaL is to improve the European measurement infrastructure for electrical impedance, with particular emphasis on the capabilities of developing NMIs and calibration centres. The project will seek to exploit the results of existing research on digital impedance bridges (DIBs) by designing, constructing and validating simple, affordable versions suitable to realise the impedance scale in the range 1 nF to 10 μF and 1 mH to 10 H with relative uncertainties in the range 10-5 to 10-6. The first results of the research project, including the bridge designs and details of a polyphase digitally synthesized multichannel source capable of providing voltage outputs of precise ratio and phase are presented.


Author(s):  
Fernando Seoane ◽  
Ramón Bragos ◽  
Kaj Lindecrantz ◽  
Pere Riu

The passive electrical properties of biological tissue have been studied since the 1920s, and with time, the use of Electrical Bioimpedance (EBI) in medicine has successfully spread (Schwan, 1999). Since the electrical properties of tissue are frequency-dependent (Schwan, 1957), observations of the bioimpedance spectrum have created the discipline of Electrical Impedance Spectroscopy (EIS), a discipline that has experienced a development closely related to the progress of electronic instrumentation and the dissemination of EBI technology through medicine.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5932
Author(s):  
José Miguel Madueño Luna ◽  
Antonio Madueño Luna ◽  
Rafael E. Hidalgo Fernández

Electrical impedance has shown itself to be useful in measuring the properties and characteristics of agri-food products: fruit quality, moisture content, the germination capacity in seeds or the frost-resistance of fruit. In the case of olives, it has been used to determine fat content and optimal harvest time. In this paper, a system based on the System on Chip (SoC) AD5933 running a 1024-point discrete Fourier transform (DFT) to return the impedance value as a magnitude and phase and which, working together with two ADG706 analog multiplexers and an external programmable clock based on a synthesized DDS in a FPGA XC3S250E-4VQG100C, allows for the impedance measurement in agri-food products with a frequency sweep from 1 Hz to 100 kHz. This paper demonstrates how electrical impedance is affected by the temperature both in freshly picked olives and in those processed in brine and provides a way to characterize cultivars by making use of only the electrical impedance, neural networks (NN) and the Internet of Things (IoT), allowing information to be collected from the olive samples analyzed both on farms and in factories.


Sign in / Sign up

Export Citation Format

Share Document