The Effects of Layer-by-Layer Thickness and Fiber Volume Fraction Variation on the Mechanical Performance of a Pressure Vessel

Author(s):  
Emre Özaslan ◽  
Ali Yetgin ◽  
Volkan Coşkun ◽  
Bülent Acar ◽  
Tarık Olğar

Due to high stiffness/weight ratio, composite materials are widely used in aerospace applications such as motor case of rockets which can be regarded as a pressure vessel. The most commonly used method to manufacture the pressure vessels is the wet filament winding. However, the mechanical performance of a filament wound pressure vessel directly depends on the manufacturing process, manufacturing site environmental condition and material properties of matrix and fiber. The designed ideal pressure vessel may not be manufactured because of the mentioned issues. Therefore, manufacturing of filament wound composite structures are based on manufacturing experience and experiment. In this study, the effect of layer-by-layer thickness and fiber volume fraction variation due to manufacturing process on the mechanical performance was investigated for filament wound pressure vessel with unequal dome openings. First, the finite element model was created for designed thickness dimensions and constant material properties for all layers. Then, the model was updated. The updated finite element model considered the layer-by-layer thickness and fiber volume fraction variation. Effects of the thickness and fiber volume fraction on the stress distribution along the motor axial direction were shown. Also hydrostatic pressurization test was performed to verify finite element analysis in terms of fiber direction strain through the motor case outer surface. Important aspects of analyzing a filament wound pressure vessel were addressed for designers.

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Emre Özaslan ◽  
Ali Yetgin ◽  
Bülent Acar ◽  
Volkan Coşkun ◽  
Tarık Olğar

Abstract Due to high stiffness/weight ratio, composite materials are widely used in aerospace applications such as motor case of rockets which can be regarded as a pressure vessel. The most commonly used method to manufacture pressure vessels is the wet filament winding. However, the mechanical performance of a filament wound pressure vessel directly depends on the manufacturing process, manufacturing site environmental condition, and material properties of matrix and fiber. The designed pressure vessel may not be manufactured because of the mentioned issues. Therefore, manufacturing of filament wound composite structures are based on manufacturing experience and experiment. In this study, effects of layer-by-layer thickness and fiber volume fraction variation due to manufacturing process on the mechanical performance were investigated for filament wound pressure vessel with unequal dome openings. First, the finite element model was created for designed thickness dimensions and constant material properties for all layers. Then, the model was updated. The updated finite element model considered the thickness of each layer separately and variation of fiber volume fraction between the layers. Effects of the thickness and fiber volume fraction on the stress distribution along the motor axial direction were shown. Also hydrostatic pressurization tests were performed to verify finite element analysis in terms of fiber direction strain through the motor case outer surface. Important aspects of analyzing a filament wound pressure vessel were addressed for designers.


2008 ◽  
Vol 33-37 ◽  
pp. 477-482 ◽  
Author(s):  
Xi Tao Zheng ◽  
Jian Feng Zhang ◽  
Fan Yang ◽  
Ya Nan Chai ◽  
Ye Li

To quantify the effect of structural through-thickness reinforcement in foam core sandwich composite panels, an experimental study was carried out which included three-point bending tests, core shear tests, flatwise tensile and compression tests, as well as edgewise compression tests. Standard test procedures based on ASTM guidelines are followed to test the behavior of the stitched panels with reinforcement at 90 degree orientation with respect to the sandwich faces. The test specimens were manufactured by using polyurethane foam Rohacell 71 IG and carbon fiber reinforced composite facesheets. The dry perform facesheets and foam core were then assembled in a dry lay-up already stitched. Kevlar 29 yarn was used to stitch both sets of panels. The results showed a significant effect of the stitching on the in-plane Young’s modulus which was attributed to local displacements of the in-plane fibers and changes in the fiber volume fraction. Stitching of sandwich panels significantly increases the maximum failure loads under flexure, core shear, flatwise tensile, flatwise compression, and edgewise compression loading. A finite element based unit-cell model was developed to estimate the elastic constants of structurally stitched foam core sandwich composite panels taking into consideration the yarn diameter, the stitching pattern and direction as well as the load direction. Depending on these parameters, local changes of the fiber volume fraction as well as regions with undisturbed and disturbed fiber orientations within the laminate plies are taken into account. A good match between the finite element modeling and the experimental data was obtained. The present work should be considered as a step towards developing a more sophisticated numerical model capable of describing mechanical behavior of sandwich structures.


2007 ◽  
Vol 546-549 ◽  
pp. 1555-1558
Author(s):  
Chun Jun Liu ◽  
Yue Zhang ◽  
Da Hai Zhang ◽  
Zhong Ping Li

In this paper the composite fracture process has been simulated via the finite element method. A micromechanics model was developed to predict the stress-strain response of a SiO2f/ SiO2 composite explicitly accounting for the local damage mechanisms such as fiber fracture and interfacial debonding. The effects of interfacial strength and fiber volume fraction on the toughness of fiber-reinforced ceramic matrix composites were investigated. The results showed that the composite failure behaviors correlated with the interface strength, which could achieve an optimum value for the elevation of the composite toughness. The increase of fiber volume fraction can make more toughening contributions.


2010 ◽  
Vol 452-453 ◽  
pp. 117-120
Author(s):  
Zhen Qing Wang ◽  
Xiao Qiang Wang ◽  
Ji Feng Zhang ◽  
Song Zhou

A method for the parametric generation of the transversal cross-section microstructure model of unidirectional long-fiber reinforced composite (LFRC) is presented in this paper. Meanwhile, both the random distribution of the fibers and high fiber volume fraction are considered in the algorithm. The fiber distribution in the cross-section is generated through random movements of the fibers from their initial regular square arrangement. Furthermore, cohesive zone element is introduced into modeling the interphase between the fiber and the matrix. All these processes are carried out by the secondary development of the finite element codes (ABAQUS) via Python language programming. Based on the model generated, micromechanical finite element analysis (FEA) is performed to predict the damage initiation and subsequent evolution of the composites. The results show that this technique is capable of capturing the random distribution nature of these composites even for high fiber volume fraction. Moreover, the results prove that a good agreement with the experimental results is found.


2011 ◽  
Vol 217-218 ◽  
pp. 125-130
Author(s):  
Xi Tao Zheng ◽  
Xian Yin Fan ◽  
Tian Jiao Qu ◽  
Lin Hu Gou ◽  
Yong Cheng

Filament-wound composites are more and more frequently used for pressure tanks and motor cases. It is essential to study their mechanical properties, especially the properties at peculiar shaped locations. A carbon fiber wound pressure vessel structure was chosen to investigate by experiment and finite element method in our program, respectively. Considering the vessel deformation, internal pressure load was added step by step so that the changing stiffness matrix and changing geometric conditions could be calculated in simulation process. In our experiment, the pressure vessel with strain gauges was tested under internal pressure to get strain data at some typical locations. And a finite element model was built with software ANSYS considering the structural deformation of the pressure vessel. Under internal pressure, it is found that fibers in the cylinder part of the vessel are in tension and fibers in partial dome region are bent and transversely compressed. The simulated results also are in good agreement with experimental results.


Author(s):  
Seyed Hamid Reza Sanei ◽  
Randall Doles ◽  
Tyler Ekaitis

This paper addresses the effect of microstructure uncertainties on elastic properties of nanocomposites using finite element analysis (FEA) simulations. Computer-simulated microstructures were generated to reflect the variability observed in nanocomposite microstructures. The effect of waviness, agglomeration, and orientation of carbon nanotubes (CNTs) were investigated. Generated microstructures were converted to image-based 2D FEA models. Two hundred different realizations of microstructures were generated for each microstructure type to capture the stochastic response. The results confirm previously reported findings and experimental results. The results show that for a given fiber volume fraction, CNTs orientation, waviness, and agglomeration result in different elastic properties. It was shown that while a given microstructural feature will improve the elastic property, it will increase the variability in the elastic properties.


Sign in / Sign up

Export Citation Format

Share Document