Low-velocity impact and post-impact biaxial residual strength tests and simulations of composite laminates

2020 ◽  
Vol 235 ◽  
pp. 111758 ◽  
Author(s):  
Wenbin Jia ◽  
Weidong Wen ◽  
Lei Fang
2014 ◽  
Vol 566 ◽  
pp. 463-467
Author(s):  
Pu Xue ◽  
H.H. Chen ◽  
W. Guo

This paper studies the impact damage under low velocity impact for composite laminates based on a nonlinear progressive damage model. Damage evolution is described by the framework of the continuum damage mechanics. The real impact damage status of composite laminates has been used to analyze the residual compressive strength instead of assumptions on damage area after impact. The validity of the methodologies has been demonstrated by comparing the numerical results with the experimental data available in literature. The delamination area has an error of 11.3%. The errors of residual strength and compressive displacement are 8.9% and 15%, which indicate that the numerical results matched well with the experimental data.


Author(s):  
Khaled S. Al-Athel ◽  
Ahmed Alomari ◽  
Abul Fazal M. Arif

Composites are prone to delamination damage when impacted by low velocity projectiles because of the poor through-thickness strength. Therefore, some of the problems with composites are their poor impact damage resistance, weak post-impact mechanical properties, and the difficulty to inspect the impacted area by nondestructive means. Damage characterization of composite materials requires a scientific methodology, knowledge of polymeric materials, and direct field experience. In this work, low-velocity impact response of composite laminates was experimentally studied using drop-tower to determine the energy absorption. Three types of composites were used: carbon fiber, glass fiber, and mixed fiber composite laminates. In addition, these composites were characterized using thermography to quantify their post impact damage. It was found with the 3D temperature distribution that a strong correlation can be determined between the measured temperatures at the impact region with the quantification of the damage using thermal imaging with advanced mid-wave camera.


2018 ◽  
Vol 28 (2) ◽  
pp. 183-199 ◽  
Author(s):  
HN Dhakal ◽  
H Ghasemnejad ◽  
ZY Zhang ◽  
SO Ismail ◽  
V Arumugam

Flax fibre-reinforced unsaturated polyester composite laminates were fabricated by vacuum bagging process and their impact and post-impact responses were investigated through experimental testing and finite element simulations. Samples of 60 mm × 60 mm × 6.2 mm were cut from the composite laminates and were subjected to a low-velocity impact loading to near perforation using hemispherical steel impactor at three different energy levels, 25, 27 and 29 Joules. Post-impact was employed to obtain full penetration. The impacted composite plates were modelled with various lay-ups using finite element software LS-DYNA (LS-DYNA User’s Manual 1997) to provide a validated finite element model for the future investigation in the field. The effects of impact and post-impact on the failure mechanisms were evaluated using scanning electron microscopy. Parameters measured were load bearing capability, energy absorption and damage modes. The results indicate that both peak load and the energy absorption were reduced significantly after the post-impact events. Consequently, it was observed from the visual images of the damages sites that the extent of damage increased with increased incident energy and post-impact events.


2018 ◽  
Vol 53 (8) ◽  
pp. 738-745 ◽  
Author(s):  
Camila Medeiros Dantas de Azevedo ◽  
Rayane Dantas da Cunha ◽  
Raimundo Carlos Silverio Freire Junior ◽  
Wanderley Ferreira de Amorim Junior

This study aimed to develop a model to analyze the residual strength of composites after low-velocity impact, using three-point bending and compression after impact tests. Two types of composite laminates with an orthophthalic polymer matrix were used: one reinforced with bidirectional E-glass fabric and the other reinforced with bidirectional Kevlar-49 fabric. To that end, an equation was developed to assess loss of strength and stiffness after impact at different distances from the impact point, and this equation was not found in any previously searched article. The results demonstrate that the laminate based in glass fiber is more appropriate for the repair process.


Author(s):  
Jingmeng Weng ◽  
Weidong Wen ◽  
Hongjian Zhang

In this paper, low-velocity impact characteristics and residual tensile/compressive strength of composite laminates at high temperatures are experimentally and analytically investigated. Low-velocity impact tests at room temperature were performed using a drop-weight apparatus, and residual strength tests at high temperatures were performed using a hydraulic MTS machine. The experimental results show that both residual tensile and compressive strength decrease monotonically with the increase of impact energy, while the variation trend of residual tensile/compressive strength of composite laminates keeps the same with longitudinal tensile/compressive strength with the increase of temperature. In addition, a new stress-based delamination failure criterion was established, in which the delamination is considered to be controlled by the difference between through-thickness stresses of adjacent layers. Once delamination occurs, only the elements below the interface are marked with delamination, whereas the material properties of the elements on both sides of the interface are reduced simultaneously. In this way, delamination can be defined more precisely without cohesive elements, and a considerable reduction in CPU time can be achieved. Combined with extended Hashin failure criteria, an integrated finite element model was established to simulate low-velocity impact damage and to predict residual tensile and compressive strength of composite laminates. The numerical results show good agreements with experimental data.


2013 ◽  
Vol 470 ◽  
pp. 1093-1096
Author(s):  
Jian Yu Zhang ◽  
Ming Li ◽  
Hai Ming Hong ◽  
Bin Jun Fei

Low velocity impact tests were carried out on T300/QY8911 and CCF300/QY8911 composite laminates, which led to similar impacted damage characterized by dent depths on laminates. Compression/compression fatigue strength tests of the impacted laminates were further conducted. The comparison of the compression/compression fatigue performance between the two types of composite laminates with similar impacted damage shows the compression/compression fatigue behaviors of T300/QY8911 and CCF300/QY8911 are similar. It follows that the CCF300/QY8911 is an effectively alternative to the T300/QY8911 in damage tolerance behavior.


Sign in / Sign up

Export Citation Format

Share Document