Study on Grinding Force and Surface Roughness of Ni3Al Based Superalloy

Author(s):  
Xiaoxiang Zhu ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Xiaofen Liu

Ni3Al based superalloy is a kind of intermetallics, it is a relatively new superalloy, its superior high temperature characteristic makes it the fifth generation aero-engine turbine blade material. The machinability of Ni3Al based superalloy is poor, and its process parameters have significant influence on grinding force and surface integrity. The creep feed grinding experiments of Ni3Al based superalloy IC10 were carried out with different process parameters. The experimental results show that the workpiece speed has the greatest effect on grinding force, surface roughness and 3D surface topography, followed by grinding depth, the wheel speed has the smallest influence. Grinding force is positively correlated with grinding depth and workpiece speed, and negatively correlated with grinding wheel speed. Similarly, surface roughness is positively correlated with grinding depth and workpiece speed, and negatively correlated with grinding wheel speed. The higher the workpiece speed, the deeper the grooves and the higher the peaks of the surface topography. In order to maintain high surface quality, small workpiece speed and grinding depth should be chosen during grinding process.

Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


Author(s):  
Jun-chen Li ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Xiao-fen Liu ◽  
Huang Bo ◽  
...  

Abstract The IC10 superalloy material is one of the most important materials for aero-engine turbine blade due to its excellent performances. However, it is difficult to be machined because of its special properties such as terrible tool wear and low machined efficiency. The creep feed grinding is widely used in machining IC10 superalloy due to the advance in reducing tool wear, improving material removal rate and surface quality. The creep feed grinding is a promising machining process with the advantages of high material removal rate due to large cutting depth, long cutting arc and very slow workpiece, and its predominant features might have significant influence on the grinding force and surface quality for the workpiece. Hence, it is of great importance to study the grinding force and surface integrity in creep feed grinding IC10 superalloy. In this paper, a series of orthogonal experiments have been carried out and the effects of grinding parameters on the grinding force and the surface roughness are analyzed. The topographies and defects of the machined surface were observed and analyzed using SEM. The results of the experiments show that the tangential force is decreased with the workpiece speed increasing. However, there is no significant change in tangential force with the increasing of grinding depth and wheel speed. The normal force is decreased with the workpiece speed increasing when the workpiece speed is less than 150 mm/min, but when the workpiece speed is more than 150 mm/min the normal force is increased tardily. Moreover, the normal force is increased sharply with the increase of grinding depth and is increased slowly with the increase of wheel speed. In general, the surface roughness is increased with workpiece speed and grinding depth increasing, while the trend of increase corresponding that of workpiece speed is more evident. The value of the surface roughness is decreased with wheel speed increasing. And it is found out that the main defect is burning of the IC10 superalloy material in creep feed grinding by energy spectrum analysis of some typical topography in this study.


2014 ◽  
Vol 800-801 ◽  
pp. 607-612 ◽  
Author(s):  
Cheng Zhe Jin ◽  
Rui Fang

High speed turn-milling has superiority on the productivity and the quality of work pieces, and is more suitable to machine micro-shaft parts and desirable miniature parts based on the turn-milling technology. In this papers adopting orthogonal experiment method cutting experiments of orthogonal turn-milling Aluminum alloy have been done. The relation between turn-milling regimes (cutter rotate speed, axial feed, feed per tooth etc.) and machined surface roughness has been ascertained. Finally, primary and secondary order of cutting regimes impacting surface roughness has more been confirmed through orthogonal experiments variance analysis, the rotate speed of cutter (cutting speed) influence greatly on surface roughness. Through 2-dimension surface topography diagram and 3-dimension surface topography of processed surface, it can be seen that high speed turn-milling processing technology can process micro miniature component of high surface quality, and features excellent development prospect and application value.


2016 ◽  
Vol 1136 ◽  
pp. 311-316 ◽  
Author(s):  
Ke Wu ◽  
Naoki Yamazaki ◽  
Yutaro Ebina ◽  
Li Bo Zhou ◽  
Jun Shimizu ◽  
...  

Finishing process of sapphire wafer is meeting huge challenge to fulfill the strict requirement of high surface quality in semiconductor industry. Fixed abrasive process, although can guarantee the profile accuracy, leaves damaged layer on the surface or subsurface of sapphire wafer. Chemical mechanical polishing (CMP) is famous for providing great surface roughness, however, sacrifices surface geometrical accuracy. Therefore, a new chromium oxide (Cr2O3) sapphire grinding wheel based on chemical mechanical grinding (CMG) principle has been developed and its performance has also been put into examination. The experiment result has demonstrated that Cr2O3 possesses an outstanding potential in terms of a high material removal rate of sapphire wafer, meanwhile, largely reduces surface roughness from about 150nm to below 10nm in 1 hour. In addition, the design of experiment (DOE) has also been carried out to study the effect of influencing factors towards ultimate surface roughness of sapphire wafer. It reveals that the revolution speed of sapphire wafer bears twice greater influence towards surface roughness than the revolution speed of grinding wheel.


2004 ◽  
Vol 471-472 ◽  
pp. 101-106 ◽  
Author(s):  
Yong Bo Wu ◽  
Mitsuyoshi Nomura ◽  
Jing Feng Zhi ◽  
M. Kato

This paper discusses the mechanism behind the grinding force decrease associated with ultrasonication of the grinding wheel in constant-depth-of-cut ultrasonically assisted grinding (UAG). By introducing a grinding model describing the cutting trace of an abrasive grain, an equation relating the grinding force decrease to such process parameters as the amplitude and frequency of vibration and the grinding wheel speed, is established. Experiments are conducted to confirm the theoretical prediction. Theoretical and empirical results both indicate that the decrease in grinding force is due to the grinding chips becoming smaller and fracturing more easily under ultrasonication. The results also suggest that the grinding force decrease is greater at higher vibration amplitudes and at lower grinding wheel speeds.


2009 ◽  
Vol 69-70 ◽  
pp. 49-53
Author(s):  
Shao Hui Yin ◽  
Hitoshi Ohmori ◽  
Wei Min Lin ◽  
Yoshihiro Uehara ◽  
Feng Jun Chen ◽  
...  

ELID (electrolytic in-process dressing) grinding was proposed by one of the authors for automatic dressing the grinding wheel while performing grinding for a long time. It offers a high effective way and has been widely used for grinding hard and brittle optical materials. However, those surfaces produced by fixed abrasive grinding are characterized by considerable sub-surface damage, micro-crack. Magneto-rheological finishing (MRF) is a novel precision finishing process for deterministic form correction and polishing of optical materials by utilizing magneto-rheological fluid. In this paper, an ultra-precision synergistic finishing process integrated MRF and ELID grinding is proposed for shorten total finishing time and improve finishing quality. A lot of nano-precision experiments have been carried out to grind and finish some optical materials such as silicon, silicon carbide, etc. ELID grinding is employed to obtain high efficiency and high surface quality, and then, MRF is employed to improve further surface roughness and form accuracy. In general, form accuracy of ~ λ/20 nm peak-to-valley (P-V) and surface roughness less than 10 Angstrom are produced in high efficiency.


Precision grinding can obtain workpiece with high surface quality and high precision, but random distribution of abrasive grains on the grinding wheel surface poses a certain difficulty to improvement of machining precision and quality. This study established kinematic model of multiple grains, simulated the grain distribution on the surface of the common grinding wheel by using the grain vibration method, and examined the effect of different grinding parameters on the surface topography of the workpiece. Results show that the peaks and valleys on the profile curve of the workpiece surface increase and the corresponding Ra and Rz heights decrease, as the peripheral velocity of the grinding wheel increases. The peaks and valleys on the profile curve of the workpiece surface decrease, and the corresponding Ra and Rz heights increase as the feed speed of the workpiece increases. The number of grinding cracks on the surface of the workpiece decreases, the length of each crack increases, and the bump height on the surface increases slightly as the grinding depth increases.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2012 ◽  
Vol 497 ◽  
pp. 10-14
Author(s):  
Tie Jun Song ◽  
Zhi Xiong Zhou ◽  
Wei Li ◽  
Ai Min Tang

Cup wheel grinding and etching pretreatment are widely used in complex coated cemented carbide cutting tools machining process. The two processes determine different surface properties due to various mechanical and thermal loads in grinding and complex chemical reaction in etching pretreatment. In this paper, the effect of the grinding wheel speed, the grinding feed rate and the etching time with the Murakami and acid solution on the residual stress and surface topography of coated cemented carbide cutting tools are investigated. After each process, the samples are characterized by scanning electron microscopy and X-ray diffraction. It is found that the grinding wheel speed has a significant influence on residual stress measured in the WC phase. Etching by Murakami generated smooth surface, which partly removed the near-surface residual stress quickly but cannot eliminate.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 325
Author(s):  
Muslim Mahardika ◽  
Martin Andre Setyawan ◽  
Tutik Sriani ◽  
Norihisa Miki ◽  
Gunawan Setia Prihandana

Titanium is widely used in biomedical components. As a promising advanced manufacturing process, electropolishing (EP) has advantages in polishing the machined surfaces of material that is hard and difficult to cut. This paper presents the fabrication of a titanium microchannel using the EP process. The Taguchi method was adopted to determine the optimal process parameters by which to obtain high surface quality using an L9 orthogonal array. The Pareto analysis of variance was utilized to analyze the three machining process parameters: applied voltage, concentration of ethanol in an electrolyte solution, and machining gap. In vitro experiments were conducted to investigate the fouling effect of blood on the microchannel. The result shows that an applied voltage of 20 V, an ethanol concentration of 20 vol.%, and a machining gap of 10 mm are the optimum machining parameters by which to enhance the surface quality of a titanium microchannel. Under the optimized machining parameters, the surface quality improved from 1.46 to 0.22 μm. Moreover, the adhesion of blood on the surface during the fouling experiment was significantly decreased, thus confirming the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document