A Variational Derivation of Equations of Motion With Contact Constraints Using SE(3)

Author(s):  
Hidenori Murakami ◽  
Takeyuki Ono

For rigid-body systems subjected to non-holonomic constraints, a streamlined method is presented to derive a minimum number of analytical equations of motion. To illustrate the method, a rolling disk problem is considered. In kinematics, an orthonormal coordinate system is attached to the center of mass together with additional coordinate systems introduced to define the connection path. For each coordinate system, a moving frame is defined by explicitly writing the coordinate vector basis and the position vector of the origin, whereby the attitude of the coordinate vector basis and the coordinates of the origin are compactly stored in a 4 × 4 frame connection matrix of the special Euclidean group, SE(3). Contact velocity constraints are transformed to pfaffians to obtain the associated variational constraints. In kinetics, the principle of virtual work is employed. The desired equations of motion are obtained by expressing the translational and angular velocities at the center of mass as the linear functions of the generalized velocities with the coefficients stored in [B]-matrix, and reducing it to [B*]-matrix after incorporating the contact constraints. The method can be easily extended to multi-body systems with both holonomic and non-holonomic constraints.

Author(s):  
Takeyuki Ono ◽  
Ryosuke Eto ◽  
Junya Yamakawa ◽  
Hidenori Murakami

Analytical equations of motion are critical for real-time control of translating manipulators, which require precise positioning of various tools for their mission. Specifically, when manipulators mounted on moving robots or vehicles perform precise positioning of their tools, it becomes economical to develop a Stewart platform, whose sole task is stabilizing the orientation and crude position of its top table, onto which various precision tools are attached. In this paper, analytical equations of motion are developed for a Stewart platform whose motion of the base plate is prescribed. To describe the kinematics of the platform, the moving frame method, presented by one of authors [1,2], is employed. In the method the coordinates of the origin of a body attached coordinate system and vector basis are expressed by using 4 × 4 frame connection matrices, which form the special Euclidean group, SE(3). The use of SE(3) allows accurate description of kinematics of each rigid body using (relative) joint coordinates. In kinetics, the principle of virtual work is employed, in which system virtual displacements are expressed through B-matrix by essential virtual displacements, reflecting the connection of the rigid body system [2]. The resulting equations for fixed base plate reduce to those for the top plate, obtained by the Newton-Euler method. A main result of the paper is the analytical equations of motion in matrix form for dynamics analyses of a Stewart platform whose base plate moves. The control applications of those equations will be deferred to subsequent publications.


Author(s):  
Tuo Lei ◽  
Jian Dai ◽  
Kok Keng Ang ◽  
Kun Li ◽  
Yi Liu

This paper presents a study of the dynamic behavior of a coupled train-slab track system considering discrete rail pads. The slab track is modeled as a three-layer Timoshenko beam. The study is carried out using the moving element method (MEM). By introducing a convected coordinate system moving at the same speed as the vehicle, the governing equations of motion of the slab track are formulated in a moving frame-of-reference. By adopting Galerkin’s method, the element stiffness, mass and damping matrices of a truncated slab track in the moving coordinate system are derived. The vehicle is modeled as a multi-body with 10 degrees of freedom. The nonlinear Hertz contact model is used to account for the wheel–rail interaction. The Newmark integration method, in conjunction with a global Newton–Raphson iteration algorithm, is employed to solve the nonlinear dynamic equations of motion of the vehicle–track coupled system. The proposed MEM model of the system is validated through comparison with available results in the literature. Further study is then made to investigate the vehicle–track system accounting for track irregularities modeled as short harmonic wave forms. Results showed that irregularities with short wavelengths have a significant effect on wheel–rail contact force and rail acceleration, and the dynamic response of the track structure does not increase monotonously with the increase of the vehicle speed.


2015 ◽  
Vol 1 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Nikolai N PASHKOV

This article deals with the problem of control the trajectory of the crew magnetic levitation relative trajectory of the software regarding the track structure of the perturbation of the gravitational and magnetic fields levitation systems, lateral stabilization and traction. The crew is presented as a system of rigid bodies, whose motion is subject to gravitational and electromagnetic forces. The spatial displacement with limited powers of levitation and lateral stabilization regarding a discrete track structure are selected by drawing up the estimated equations of the dynamics of the crew as inertial coordinates of the centers of mass of solids. The coordinates of any point on the carriage in a local coordinate system are converted in the coordinate system associated with the center of mass of the crew to bring the point of application of external force to the center of mass of the crew. A general model of the dynamics of the crew is based on the equation of Lagrange-Maxwell which binds to the active mass of the external forces of gravity that govern the electromagnetic force, the force of inertia and friction. The kinetic energy of the mechanical system is defined by the velocity projections on the axis of the fixed coordinate system as a quadratic form. The crew simulated magneto elastic coupling with the track structure changing the potential energy of magnetic levitation and lateral stabilization at the deformation of the object or the displacement and rotation of the center of mass of the crew in three-dimensional space. The inverse problem of dynamics is solved to determine the control forces for a given trajectory of the crew magnetic levitation. The equations of motion the crew on a magnetic cushion are linearized regarding increments relative coordinates of the centers of mass of the crew vector and presented in the form of equations of the phase space of states.


2017 ◽  
Vol 84 (6) ◽  
Author(s):  
Hidenori Murakami

In order to develop an active nonlinear beam model, the beam's kinematics is examined in this paper, by employing the kinematic assumption of a rigid cross section during deformation. As a mathematical tool, the moving frame method, developed by Cartan (1869–1951) on differentiable manifolds, is utilized by treating a beam as a frame bundle on a deforming centroidal curve. As a result, three new integrability conditions are obtained, which play critical roles in the derivation of beam equations of motion. These integrability conditions enable the derivation of beam models in Part II, starting from the three-dimensional Hamilton's principle and the d'Alembert's principle of virtual work. To illustrate the critical role played by the integrability conditions, the variation of kinetic energy is computed. Finally, the reconstruction scheme for rotation matrices for given angular velocity at each time is presented.


Author(s):  
Hidenori Murakami

In order to develop an active nonlinear beam model, the beam’s kinematics is examined by employing the kinematic assumption of a rigid cross section during deformation. As a mathematical tool, the moving frame method, developed by Élie Cartan (1869–1951) on differentiable manifolds, is utilized by treating a beam as a frame bundle on a deforming centroidal curve. As a result, three new integrability conditions are obtained, which play critical roles in the derivation of beam equations of motion. They also serve a role in a geometrically-exact finite-element implementation of beam models. These integrability conditions enable the derivation of beam models starting from the three-dimensional Hamilton’s principle and the d’Alembert principle of virtual work. Finally, the reconstruction scheme for rotation matrices for given angular velocity at each time is presented.


Author(s):  
Alexandra Norbach ◽  
Kotryna Bedrovaite Fjetland ◽  
Gina Vikum Hestetun ◽  
Thomas J. Impelluso

Norway has an opportunity to harvest ocean wave energy through gyroscopic precession as an alternative source of renewable energy, within practical limitations. This research assesses the energy extracted by gyroscopic wave energy generators and their use to provide supplementary power to fish farms and lighting on oilrigs. This project implements the Moving Frame Method (MFM) in dynamics to model the extracted power from a gyroscopic wave energy generator. The MFM leverages Lie Group Theory, Cartan’s moving frames and a new notation from the discipline of geometrical physics. Continuing, the Principle of Virtual Work extracts the equations of motion from the structure of the Special Orthogonal Group. However, the MFM supplements its analysis with a novel application of the restriction on the variations of the angular velocities. This research extends previous work as follows: it accounts for motor torques, it opens a placeholder for buoyancy, and it solves the full 3D set of equations (without assuming negligible yaw). After showing how to obtain the suite of descriptive equations of motion, this project integrates them, however with a relatively simple integration scheme. To complete each step in the analysis, the rotation matrix is updated using the Cayley Hamilton Theorem and the Rodriguez formula. Finally, the results are displayed using the Web Graphics Library such that the actual numerical analysis and display happens on cell phones.


Author(s):  
Takeyuki Ono ◽  
Ryosuke Eto ◽  
Junya Yamakawa ◽  
Hidenori Murakami

Abstract This paper presents dynamic modeling of a planar, three degrees-of-freedom manipulator consisting of two parallel plates, referred to as top and base plates, which are connected by three actuated legs. When a sensitive equipment is carried by a moving robot or vehicle, it becomes necessary to mount the equipment on a platform which achieves precise positioning for stabilization. The objectives of this paper are to derive analytical equations of motion and apply them to control simulations on the stabilizing planar manipulator. In the derivation of analytical equations of motion, the moving frame method is utilized to describe the kinematics of the two-dimensional multibody system. For the manipulator system comprised of jointed bodies, a graph tree is utilized, which visually illustrates how the constituent bodies are connected to each other. For kinetics, the principle of virtual work is employed to derive the analytical equations of motion for the manipulator system. The resulting equations of motion are used to numerically assess the performance of a sliding mode controller (SMC) to stabilize the top plate from the motion of the translating and rotating base plate. In the numerical simulation, the SMC is compared with a simple PID controller to evaluate both the tracking performance and robustness.


Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

Some thoughts about different ways of formulating the equations of motion of a four-bar mechanism are communicated. Four analytic methods to derive the equations of motion are compared. In the first method, Lagrange’s equations in the traditional form are used, and in a second method, the principle of virtual work is used, which leads to equivalent equations. In the third method, the loop is opened, principal points and a principal vector linkage are introduced, and the equations are formulated in terms of these principal vectors, which leads, with the introduced reaction forces, to a system of differential-algebraic equations. In the fourth method, equivalent masses are introduced, which leads to a simpler system of principal points and principal vectors. By considering the links as pseudorigid bodies that can have a uniform planar dilatation, a compact form of the equations of motion is obtained. The conditions for dynamic force balance become almost trivial. Also the equations for the resulting reaction moment are considered for all four methods.


Author(s):  
Junghsen Lieh ◽  
Imtiaz Haque

Abstract Modeling and dynamic analysis of a slider-crank mechanism with flexible joint and coupler is presented. The equations of motion of the mechanism model are formulated using a virtual work multibody formalism and cast in terms of a minimum set of generalized coordinates through a Jacobian matrix expansion. Numerical results show the influence of time-varying coefficients on the mechanism dynamic behavior due to a repeated task. The results illustrate that the joint motion and coupler deformation are highly coupled. The joint response is dominated by double frequency of input, however, the coupler deformation is influenced by the same frequency as that of excitation. Increase in joint stiffness tends to decrease the variations in coupler deformation.


1966 ◽  
Vol 44 (9) ◽  
pp. 2095-2110 ◽  
Author(s):  
Marcel Banville ◽  
P. D. Kunz

The three-body wave function for particles of equal mass is expanded in a systematic way by making use of a hyperspherical coordinate system. Apart from the center-of-mass coordinates, three of the variables are the usual Euler angles describing the orientation of the plane defined by the three particles. The other three variables, which describe the shape of the triangle, are represented in terms of a radial coordinate and two angular coordinates. The kinetic energy for these last three coordinates is separable and allows one to expand the three-body wave function in a complete set of orthogonal functions based upon the angular variables. The particular symmetry of the internal part of the wave function under permutations of the three particles is easily represented in terms of the set of functions for one of the angular variables. By choosing a particular set of radial functions one can then obtain the upper limit on the binding energy for the three-body system through the Rayleigh–Ritz variational procedure. The advantage of this particular coordinate system is that all but a few of the variational parameters occur linearly in the wave function, and the minimum energy can be obtained by diagonalizing a small number of the energy matrices. The method is applied to find the lower limit to a standard spin-independent potential of Gaussian shape.


Sign in / Sign up

Export Citation Format

Share Document