Experimental Investigation of Spiral Wound Module Under Pressure Retarded Osmosis Process

Author(s):  
Luis Vives ◽  
Mostafa H. Elsharqawy ◽  
Edgar Quiñones-Bolaños

Abstract The performance of a spiral wound module operating under pressure retarded osmosis (PRO) is measured experimentally with a feed water back pressure. The module has a diameter of 0.1 m, a length of 1.02 m, and total membrane surface area of 7.45 m2 capsulated in a stainless-steel pressure vessel. The module is commercially designed for a reverse osmosis (RO) system however, a feed water outlet is added, and a back pressure is applied to adapt it for the PRO process. The experimental results of the spiral wound PRO module with a back pressure in the feed water side showed low power density values (about 0.35 W/m2) compared with those commonly found in the literature, demonstrating the geometric inefficiency of RO modules for the PRO process.

1994 ◽  
Vol 72 (2) ◽  
pp. 861-871 ◽  
Author(s):  
D. Ulrich ◽  
R. Quadroni ◽  
H. R. Luscher

1. Voltage-clamp, current-clamp, and morphological data were obtained from visually identified motoneurons in organotypic cocultures of rat embryonic spinal cord, dorsal root ganglia, and skeletal muscle. The cells were injected with Biocytin during whole-cell patch-clamp recordings and stained with horseradish peroxidase. 2. The somata and dendritic trees of the cells were reconstructed with a semiautomatic reconstruction system. The motoneurons had a common multipolar shape. An elliptic soma gave rise to 3-9 stem dendrites with a mean diameter of 2.5 +/- 0.9 (SD) micron terminating in 24 +/- 7 dendritic endings. The mean total dendritic path length was 3,306 +/- 1,075 microns. The mean total membrane surface area was 15,594 +/- 10,404 microns 2 with a dendritic to somatic membrane surface area ratio of 3.4 +/- 1.4 (n = 7 cells). 3. The ratio between the sum of the diameters of the two daughter branches and the diameter of the parental branch each raised to the 3/2 power at all branch points was 1.3 +/- 0.28 (n = 8 cells). The dendritic trees of the cells tapered continuously from the soma to the distal ends. The mean normalized dendritic trunk parameter of all cells was 0.62 +/- 0.22. 4. The motoneurons had a mean input resistance RN of 498 +/- 374 M delta, a mean membrane time constant (tau m) of 22 +/- 4.6 ms, and a mean dendritic dominance (rho) of 2.7 +/- 0.86 (n = 5 cells). The mean electronic length (L) calculated from tau m and the slowest voltage-clamp time constant (tau VC1) was 0.7 +/- 0.04 (n = 7 cells). 5. The specific membrane capacitance (Cm) estimated from the charge of the capacitive current during a voltage step and the total membrane surface area was 1.08 +/- 0.3 microF/cm2 (n = 6 cells). 6. Compartmental computer models were constructed of individual cells. Experimental and simulated voltage transients were matched with Cm = 1 microF/cm2, a uniform membrane resistivity (Rm) = tau m/Cm and a cytosolic resistivity (Ri) of 308 +/- 39 omega.cm (n = 3 cells). 7. The mean electrotonic length of the dendritic paths was 0.83 +/- 0.2 (n = 5 cells). The mean input resistance at the dendritic terminals (RT) was 1,413 +/- 260 M omega. Synaptic conductances were applied at all distal dendritic compartments of the model cells. The resulting synaptic currents were calculated at the input site and at the soma. The mean transient current attenuation ratio was 4.7 +/- 1.7 under idealized voltage-clamp conditions.(ABSTRACT TRUNCATED AT 400 WORDS)


1980 ◽  
Vol 85 (3) ◽  
pp. 577-586 ◽  
Author(s):  
R P Bolender ◽  
D Paumgartner ◽  
D Muellener ◽  
G Losa ◽  
E R Weibel

The purpose of the study was to consider quantitatively the relationships between the surface area of the endoplasmic reticulum (ER) and constituent marker enzyme activities, as they occur in fractions collected from rat liver homogenates. The ER surface area was estimated in five membrane-containing fractions by use of a combined cytochemical-stereological technique (5), while, at the same time, ER marker enzymes were assayed biochemically. Fraction/homogenate recoveries for the ER enzymes averaged 100%, total membrane surface area 98%, and ER surface area 96%. Relative specific activities, which compare the relative amounts of ER marker enzyme activities to the relative ER surface area in the membrane-containing fractions, indicate variable distributions for glucose-6-phosphatase and NADPH cytochrome c reductase, but not for esterase.


2017 ◽  
Vol 68 (6) ◽  
pp. 1302-1305
Author(s):  
Ali A. A. Al Janabi ◽  
Oana Cristina Parvulescu ◽  
Bogdan Trica ◽  
Tanase Dobre

The paper aimed at studying the performances of pervaporation separation of isopropanol-water system using a Pervatech ceramic membrane at various values of feed mixture flow rate (F=1000 kg/hr), feed water mass fraction (xF=0.1-0.2), operation temperature (t=60-90 �C), permeate pressure (pP=1000-9000 Pa) and water separation degree (sW=0.9, 0.95). Membrane total flux and separation factor were predicted applying a second order response surface model with 3 factors, i.e., xF, t and pP. An algorithm for estimating the membrane surface area was presented. Membrane area increased with sW and xF and its lowest values (A=13 m2 for xF=0.1 and A=24 m2 for xF=0.2) were attained for t=60 �C and pP=9000 Pa. These findings could be applied for optimizing the process of isopropanol dehydration by pervaporation.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 380
Author(s):  
Yan Chen ◽  
Huiping Li ◽  
Weihai Pang ◽  
Baiqin Zhou ◽  
Tian Li ◽  
...  

Nanofiltration (NF) is a promising post-treatment technology for providing high-quality drinking water. However, membrane fouling remains a challenge to long-term NF in providing high-quality drinking water. Herein, we found that coupling pre-treatments (sand filtration (SF) and ozone–biological activated carbon (O3-BAC)) and NF is a potent tactic against membrane fouling while achieving high-quality drinking water. The pilot results showed that using SF+O3-BAC pre-treated water as the feed water resulted in a lower but a slowly rising transmembrane pressure (TMP) in NF post-treatment, whereas an opposite observation was found when using SF pre-treated water as the feed water. High-performance size-exclusion chromatography (HPSEC) and three-dimensional excitation–emission matrix (3D-EEM) fluorescence spectroscopy determined that the O3-BAC process changed the characteristic of dissolved organic matter (DOM), probably by removing the DOM of lower apparent molecular weight (LMW) and decreasing the biodegradability of water. Moreover, amino acids and tyrosine-like substances which were significantly related to medium and small molecule organics were found as the key foulants to membrane fouling. In addition, the accumulation of powdered activated carbon in O3-BAC pre-treated water on the membrane surface could be the key reason protecting the NF membrane from fouling.


1992 ◽  
Vol 101 (4) ◽  
pp. 907-913 ◽  
Author(s):  
G.J. Cannon ◽  
J.A. Swanson

Murine bone marrow-derived macrophages, which measure 13.8 +/− 2.3 microns diameter in suspension, can ingest IgG-opsonized latex beads greater than 20 microns diameter. A precise assay has allowed the determination of the phagocytic capacity, and of physiological parameters that limit that capacity. Ingestion of beads larger than 15 microns diameter required IgG-opsonization, and took 30 minutes to reach completion. Despite the dependence on Fc-receptors for phagocytosis of larger beads, cells reached their limit before all cell surface Fc-receptors were occupied. The maximal membrane surface area after frustrated phagocytosis of opsonized coverslips was similar to the membrane surface area required to engulf particles at the limiting diameter, indicating that the capacity was independent of particle shape. Vacuolation of the lysosomal compartment with sucrose, which expanded endocytic compartments, lowered the phagocytic capacity. This decrease was reversed when sucrose vacuoles were collapsed by incubation of cells with invertase. These experiments indicate that the phagocytic capacity is limited by the amount of available membrane, rather than by the availability of Fc-receptors. The capacity was also reduced by depolymerization of cytoplasmic microtubules with nocodazole. Nocodazole did not affect the area of maximal cell spreading during frustrated phagocytosis, but did alter the shape of the spread cells. Thus, microtubules may coordinate cytoplasm for engulfment of the largest particles.


2019 ◽  
Vol 30 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Julia A. Pinette ◽  
Suli Mao ◽  
Bryan A. Millis ◽  
Evan S. Krystofiak ◽  
James J. Faust ◽  
...  

Transporting epithelial cells optimize their morphology for solute uptake by building an apical specialization: a dense array of microvilli that serves to increase membrane surface area. In the intestinal tract, individual cells build thousands of microvilli, which pack tightly to form the brush border. Recent studies implicate adhesion molecule CDHR2 in the regulation of microvillar packing via the formation of adhesion complexes between the tips of adjacent protrusions. To gain insight on how CDHR2 contributes to brush border morphogenesis and enterocyte function under native in vivo conditions, we generated mice lacking CDHR2 expression in the intestinal tract. Although CDHR2 knockout (KO) mice are viable, body weight trends lower and careful examination of tissue, cell, and brush border morphology revealed several perturbations that likely contribute to reduced functional capacity of KO intestine. In the absence of CDHR2, microvilli are significantly shorter, and exhibit disordered packing and a 30% decrease in packing density. These structural perturbations are linked to decreased levels of key solute processing and transporting factors in the brush border. Thus, CDHR2 functions to elongate microvilli and maximize their numbers on the apical surface, which together serve to increase the functional capacity of enterocyte.


2012 ◽  
Vol 7 (2) ◽  
pp. 9-11 ◽  
Author(s):  
NS Chowdhury ◽  
FMM Islam ◽  
F Zafreen ◽  
BA Begum ◽  
N Sultana ◽  
...  

Introduction: Patients with end stage renal disease require 12 hours of haemodialysis per week in three equal sessions (4 hours/day for 3 days/week). But the duration and frequency of treatment can be reduced by increasing the surface area of the dialyzer membrane. Methods: In this prospective study 40 patients of end stage renal disease receiving haemodialysis for more than six months were included to observe the effects of increment in the surface area of the dialyzer membrane on the adequacy of haemodialysis. Result: It was observed that 20 patients receiving haemodialysis on a dialyzer with membrane surface area of 1.2 m² did not have satisfactory solute clearance index. Urea reduction ratio was 45.9 ± 3.03 and fractional urea clearance (Kt/V) was 0.76 ± 0.09. On the other hand patients (20 cases) receiving haemodialysis on a dialyzer with membrane surface area of 1.3 m² had a urea reduction ratio 50.76± 5.16 and fractional urea clearance (Kt/V) 0.91 ± 0.16. All the patients of both groups received dialysis for 8 hours/week in two equal sessions (4 hours/day for 2 days/week). Statistically the increment was significant (p<0.001). Conclusion: This study reveals, adequacy of dialysis can be increased by increasing the surface area of the dialyzer membrane. So, considering the poor socioeconomic condition of Bangladesh and patients' convenience, a short duration, low cost dialysis regime can be tried by increasing the surface area of dialyzer membrane. DOI: http://dx.doi.org/10.3329/jafmc.v7i2.10387 JAFMC 2011; 7(2): 9-11


Sign in / Sign up

Export Citation Format

Share Document