Mechanical and System Simulation Modeling and Analysis of Surge Relief Valve

2020 ◽  
Author(s):  
Hao Zhou ◽  
Changqun Yang ◽  
Jun Yuan ◽  
Shengdun Zhao ◽  
Yuyang Chen ◽  
...  

Abstract Surge pressure relief valve is widely used in oil transportation. When water hammer occurs in the pipeline, the valve shall be opened in time to release the high pressure so as to ensure the safety of the oil pipeline. This paper discusses the structure and principle of the surge relief valve. Combined with the working process, the stress and working state of the main valve and the pilot valve are analyzed. The mechanical model of the pilot valve is established. This paper focuses on the analysis of the parameters affecting the closing process of the main valve. The relevant laws of the structure and performance parameters of the pilot valve to the main valve closing are obtained. The model of relief valve is modeled and simulated in detail by the AMESim software. The dynamic characteristics of the surge relief valve are analyzed and the correctness of the main parameters and rules that affect the main valve closing is verified by using the model. According to the analysis and simulation results, the friction force of the pilot valve can only affect whether the two valves can close normally. The closing time of the main valve is inversely proportional to the diameter of the inlet pressure orifice. In the normal operating range, the closing time of main valve gradually increases with the diameter of outlet pressure pipes, but does not change with the length of outlet pressure pipes.

Author(s):  
Marat R. Lukmanov ◽  
◽  
Sergey L. Semin ◽  
Pavel V. Fedorov ◽  
◽  
...  

The challenges of increasing the energy efficiency of the economy as a whole and of certain production sectors in particular are a priority both in our country and abroad. As part of the energy policy of the Russian Federation to reduce the specific energy intensity of enterprises in the oil transportation system, Transneft PJSC developed and implements the energy saving and energy efficiency improvement Program. The application of energy-saving technologies allowed the company to significantly reduce operating costs and emissions of harmful substances. At the same time, further reduction of energy costs is complicated for objective reasons. The objective of this article is to present additional methods to improve the energy efficiency of oil transportation by the example of the organizational structure of Transneft. Possibilities to reduce energy costs in the organization of the operating services, planning and execution of work to eliminate defects and preparatory work for the scheduled shutdown of the pipeline, the use of pumping equipment, including pumps with variable speed drive, the use of various pipelines layouts, changing the volume of oil entering the pipeline system and increase its viscosity.


2021 ◽  
Author(s):  
Qiongxiao Wu ◽  
Jianjun Wang ◽  
Jingming Chen ◽  
Pengzheng Li

Abstract Based on the one-dimensional simulation model of lubricating oil system is established and analyzed by using FLOWMASTER software, this paper proposes a new method of optimizing lubricating oil system by PID technology. Ensure that the configuration requirements and control strategies of the relevant accessories of the simulation model are satisfied with the design requirements. Firstly, by simulating lubricating oil pressure fluctuation and lubricating oil flow distribution under Open/Close Valve in different opening and closing time, the optimal opening/closing time of Open/Close Valve is determined to be 0.2 s and 0.5 s respectively. Secondly, by writing the controller script file combined with a controller to realize automatic unloading relief valve simulation, determine the relief valve pressure regulating range of 0∼0.38 MPa, For precision of constant pressure valve of oil spill, the simulation results show that the average 10 m3/h flow caused by pressure changes of about 0.06 MPa. Under the flow sudden change signal of about 40 m3/h, the maximum pressure change is less than 0.1 MPa. Through the simulation results, it is found that most of the lubrication parts in the original design have the phenomenon of flow redundancy, which causes unnecessary pump power loss. The system is optimized by PID technology. By comparing the simulation results before and after optimization, it is found that the speed of constant displacement pump could be changed in time by PID controller, and the flow redundancy could be improved significantly, so the lubricating oil system could be lower consumption and achieve the purpose of optimization.


2021 ◽  
pp. 50-54
Author(s):  
L. R. Yurenkova ◽  
N. V. Bilash

A significant part of the oil consumed in the world is transported from production and processing sites to consumers via tankers and pipelines. According to experts' forecasts, the demand for oil and petroleum products in the coming years will be significantly higher than in 2020. In Russia, the oil transportation market is developing in several directions. The main directions are investing in pipeline transport and improving the design of tanks for storing oil and petroleum products. The article considers the contribution of the great Russian engineer V.G. Shukhov to the solution of the problem of oil transportation and storage and in general to the development of the oil industry. In the article "Oil Pipelines" (1884) and in the book "Pipelines and their application in the oil industry" (1894), V.G. Shukhov gave precise mathematical formulae for describing the processes of oil and fuel oil flowing through pipelines, creating a classical theory of oil pipelines. He is the author of the projects of the first Russian main pipelines: Baku-Batumi with a length of 883 km (1907) and Grozny-Tuapse with a length of 618 km (1928). Shukhov V.G. designed and then supervised the construction of oil pipelines of the companies "Branobel", "G.M. Lianozova and sons" and the world's first heated fuel oil pipeline. Working in the oil fields in Baku, Shukhov V.G. developed the basics of lifting and pumping oil products, proposed a method of lifting oil using compressed air — airlift, developed a calculation method and technology for the construction of cylindrical steel tanks for oil storage facilities.


Author(s):  
Byungho Jeong ◽  
Chen-Yang Cheng ◽  
Vittal Prabhu

This paper proposes a workflow and performance model for surgery patient identification using RFID (Radio Frequency Identification). Certain types of mistakes may be prevented by automatically identifying the patient before surgery. The proposed workflow is designed to ensure that both the correct site and patient are engaged in the surgical process. The performance model can be used to predict patient waiting time and service duration time with RFID implementation. A proof-of-concept system is developed to understand the information flow and to use information in RFID-based patient identification. Performance model indicates the response time to patients can be reduced to 38% after four hours using the proposed RFID based workflow.


Author(s):  
Yuan-Shun Dai ◽  
Jack Dongarra

Grid computing is a newly developed technology for complex systems with large-scale resource sharing, wide-area communication, and multi-institutional collaboration. It is hard to analyze and model the Grid reliability because of its largeness, complexity and stiffness. Therefore, this chapter introduces the Grid computing technology, presents different types of failures in grid system, models the grid reliability with star structure and tree structure, and finally studies optimization problems for grid task partitioning and allocation. The chapter then presents models for star-topology considering data dependence and treestructure considering failure correlation. Evaluation tools and algorithms are developed, evolved from Universal generating function and Graph Theory. Then, the failure correlation and data dependence are considered in the model. Numerical examples are illustrated to show the modeling and analysis.


2020 ◽  
Vol 39 (14) ◽  
pp. 1686-1705
Author(s):  
Xiaowei Shan ◽  
Lionel Birglen

Soft grasping of random objects in unstructured environments has been a research topic of predilection both in academia and in industry because of its complexity but great practical relevance. However, accurate modeling of soft hands and fingers has proven a difficult challenge to tackle. Focusing on this issue, this article presents a detailed mathematical modeling and performance analysis of parallel grippers equipped with soft fingers taking advantage of the fin ray effect (FRE). The FRE, based on biomimetic principles, is most commonly found in the design of grasping soft fingers, but despite their popularity, finding a convenient model to assess the grasp capabilities of these fingers is challenging. This article aims at solving this issue by providing an analytic tool to better understand and ultimately design this type of soft fingers. First, a kinetostatic model of a general multi-crossbeam finger is established. This model will allow for a fast yet accurate estimation of the contact forces generated when the fingers grasp an arbitrarily shaped object. The obtained mathematical model will be subsequently validated by numerically to ensure the estimations of the overall grasp strength and individual contact forces are indeed accurate. Physical experiments conducted with 3D-printed fingers of the most common architecture of FRE fingers will also be presented and shown to support the proposed model. Finally, the impact of the relative stiffness between different areas of the fingers will be evaluated to provide insight into further refinement and optimization of these fingers.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Feng Zi-Ming ◽  
Tan Jing-Jing ◽  
Sun Yanan ◽  
Zhang De-Shi ◽  
Duan Wei-Bo

In consideration of the rod, the tube, and the liquid column, a 3D dynamic model was established, which could be expressed as a set of partial differential equations. A measured torque curve and a calculated torque curve of Nan1-2-22 oil-well in Daqing oilfield were contrasted with each other which improved the rationality of this model. At last, we researched the influence of the stroke and the frequency of stroke on the displacement of rod, suspension velocity, suspension acceleration, polish rod load, and net torque of gearbox. This 3D dynamic model has a higher calculated accuracy and veracity and could be used to design and optimize the structure of rod pumping and the working process of pumping wells.


2017 ◽  
Vol 12 (1) ◽  
pp. 112 ◽  
Author(s):  
Leksono Mucharam ◽  
Silvya Rahmawati ◽  
Rizki Ramadhani

Oil and gas industry is one of the most capital-intensive industry in the world. Each step of oil and gas processing starting from exploration, exploitation, up to abandonment of the field, consumes large amount of capital. Optimization in each step of process is essential to reduce expenditure. In this paper, optimization of fluid flow in pipeline during oil transportation will be observed and studied in order to increase pipeline flow performance.This paper concentrates on chemical application into pipeline therefore the chemical can increase overall pipeline throughput or decrease energy requirement for oil transportation. These chemicals are called drag reducing agent, which consist of various chemicals such as surfactants, polymers, nanofluids, fibers, etc. During the application of chemical into pipeline flow system, these chemicals are already proven to decrease pump work for constant flow rate or allow pipeline to transport more oil for same amount of pump work. The first application of drag reducer in large scale oil transportation was in Trans Alaskan Pipeline System which cancel the need to build several pump stations because of the successful application. Since then, more company worldwide started to apply drag reducer to their pipeline system.Several tedious testings on laboratory should be done to examine the effect of drag reducer to crude oil that will be the subject of application. In this paper, one of the testing method is studied and experimented to select the most effective DRA from several proposed additives. For given pipeline system and crude oil type, the most optimum DRA is DRA A for pipeline section S-R and for section R-P is DRA B. Different type of oil and pipeline geometry will require different chemical drag reducer. 


2019 ◽  
Vol 17 (2) ◽  
pp. 556-566 ◽  
Author(s):  
Shengzhu Zhang ◽  
Xu Wang ◽  
Y. Frank Cheng ◽  
Jian Shuai

Abstract Oil spill-induced vapor cloud explosions in a confined space can cause catastrophic consequences. In this work, investigation was conducted on the catastrophic pipeline leak, oil spill, and the resulting vapor cloud explosion accident occurring in China in 2013 by modeling analysis, field surveys, and numerical simulations. The total amount of the spilled oil was up to 2044.4 m3 due to improper disposal. The long residence time of the oil remaining in a confined space permitted the formation of explosive mixtures and caused the vapor cloud explosion. A numerical model was developed to estimate the consequence of the explosion based on volatilization testing results. The results show that the death-leading zone and the glass-breaking zone could be 18 m and 92 m, respectively, which are consistent with the field investigation. The severity of the explosion is related to the amount of the oil spill, properties of oil, and volatilization time. It is recommended that a comprehensive risk assessment be conducted to analyze the possible consequences upon oil spilling into a confined space. Prompt collection and ventilation measures should be taken immediately after the spill occurs to reduce the time for oil volatilization and prevent the mixture from reaching its explosive limit.


Sign in / Sign up

Export Citation Format

Share Document