Manufacturing Error Detection in Plate and Cylindrical Composite Structures

Author(s):  
Cihan Talebi ◽  
Bülent Acar ◽  
Gökhan O. Özgen

Abstract Due to their superior weight to strength ratio of composites to common metallic structures, composite technology is widely used in aerospace industry. Assessment of damage in composites has gained interest after a large number of accidents caused by unanticipated damages in the composite structures. Many different structural health monitoring applications were developed over the years due to the fact that composite materials may inherit damage from within, not always visible from surface. The most common types of errors encountered in the industry are due to misaligned fibers, a mix-up in ply order, and delaminations: all presenting changes in the vibro-acoustical performance of the composite structure. This paper discusses the change in the dynamic properties of a composite structure contains a manufacturing error such as a ply lay-up error, and a ply angle error. Both plate and cylindrical structure types were considered for the stated error types. Effect of symmetric errors, unsymmetrical and unbalanced errors, and mid-plane errors were considered in the case of ply orientations, and dynamic stiffness matrix was used to identify the error. Identification of the structure’s layup properties and manufacturing error identification is employed. From the measured modal properties of the structure, a back-tracking strategy was used to generate the ply lay-up of the composite structure. Prepreg plates of a single carbon fiber system and filament wound hybrid cylinders consisting of glass and carbon fibers were manufactured for testing. Modal tests on plates and cylindrical composite structures were performed and compared with the analysis. A good match between the finite element model and experiment was shown in natural frequencies and mode shapes.

1999 ◽  
Author(s):  
Frederic Louarn ◽  
Pandeli Temarel

The dynamic behaviour of a WOR 60 is investigated using three dimensional hydroelasticity theory. Global structural responses (e.g. stresses) in waves are obtained corresponding to the upright as well as to the more realistic heeled sailing configurations, revealing the connection between the ballast keel and the hull as being a critical area of the structure. For the "dry hull" analysis, a global finite element model has been developed, incorporating the hull and deck shell, the internal structure, the ballast keel and the rig together with rigging loads. The modular nature of the model has been used to assess the relative influence of each of the aforementioned components upon the required characteristic dynamic properties (e.g. natural frequencies and principal mode shapes). Regarding the "wet hull" analysis, a three dimensional Green's function technique, using pulsating sources distributed over the wetted surface, provides a numerical solution to the case of the yacht sailing in regular waves at arbitrary heading. Principal coordinates for the rigid body motions and flexible distortions of interest are evaluated and the latter are used to obtain the dynamic stresses in waves using modal summation. This paper will describe the modelling techniques used and discuss the applicability / limitations of hydroelasticity theory regarding this type of structures in the light of the results obtained for the upright and heeled operational conditions, as well as from the point of view of design aspects such as "L" and "T" keel configurations. The ABS design criteria will provide a practical reference for comparing the results from the dynamic analysis.


Author(s):  
Michael Kawrza ◽  
Thomas Furtmüller ◽  
Christoph Adam ◽  
Roland Maderebner

AbstractIn this paper, the dynamic properties of a point-supported cross-laminated timber slab are studied in order to determine the elastic material parameters on this basis. A detailed experimental modal analysis of the slab with dimensions 16.0 m x 11.0 m is performed, and seven modes including the natural frequencies, damping ratios and mode shape components at 651 sensor positions are identified. The found mode shapes are complex due to environmental influences that occurred during the two-day measurement campaign. This error is corrected by eliminating these influences. A finite element model of the slab is presented, whose parameters in terms of material properties and boundary conditions are determined by a model updating procedure. Based on the modal properties of the seven experimentally identified modes, an accurate and robust parameter set is obtained, which can be used in further numerical studies of the considered CLT to check serviceability limit criteria.


Author(s):  
Ivan Duvnjak ◽  
Domagoj Damjanović ◽  
Natalia Sabourova ◽  
Niklas Grip ◽  
Ulf Ohlsson ◽  
...  

<p>Damage assessment of structures includes estimation of location and severity of damage. Quite often it is done by using changes of dynamic properties, such as natural frequencies, mode shapes and damping ratios, determined on undamaged and damaged structures. The basic principle is to use dynamic properties of a structure as indicators of any change of its stiffness and/or mass. In this paper, two new methods for damage detection are presented and compared. The first method is based on comparison of normalised modal shape vectors determined before and after damage. The second method uses so-called &#119897;l-norm regularized finite element model updating. Some important properties of these methods are demonstrated using simulations on a Kirchhoff plate. The pros and cons of the two methods are discussed. Unique aspects of the methods are highlighted.</p>


Author(s):  
S. V. Efimov ◽  
K. O. Zhunev

Innovative heavy wagons with a 25–27 tf axle load and the freight train movement organization having a higher weight and length are being put into operation in Russia. New operating conditions of railway bridges require an assessment of bearing capacity, durability, accumulation rate of fatigue damage and reliability. The important parameters are the dynamic properties of railway bridges (frequencies and modes of natural vibrations, decay rate, dynamic stiffness).The aim of this work is to determine the dynamic interaction of trains having different structure, weight and length with a railway bridge using numerical modeling in the midas Civil bridge software. The proposed model is verified by the dynamic parameters of spans (natural vibration frequencies), which are determined during the bridge inspection using a Tensor-MS system.The modal analysis is given to the finite element model. The lowest natural modes of the bridge are determined. Based on numerical simulation of the interaction between the train and the bridge unfavorable speed of trains is calculated leading to an increase in the oscillation amplitude of the bridge span as well as in the bridge dynamic coefficient with regard to the design features of the train structure and composition.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
E. Ercan ◽  
A. Nuhoglu

This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed.


2012 ◽  
Vol 482-484 ◽  
pp. 2454-2459 ◽  
Author(s):  
Xu Da Qin ◽  
Cui Lu ◽  
Qi Wang ◽  
Hao Li ◽  
Lin Jing Gui

Based on the analysis of the working principle and structure characteristics of helical milling unit, the prototype’s three-dimensional model was built, the prototype’s finite element modal analysis was conducted, and the first 6 natural frequencies and their mode shapes were obtained. The finite element model is experimentally validated by comparing finite element and experimental modal’s parameters. This paper investigates the dynamic properties of prototype, and provides theoretical references for the subsequent dynamic analysis and structural optimization.


Author(s):  
Vikas Arora

Model updating techniques are used to correct the finite element model of a structure using experimental data such that the updated model more correctly describes the dynamic properties of the structure. One of the applications of such an updated model is to predict the effects of making modifications to the structure. These modifications may be imposed by design alterations for operating reasons. Most of the model updating techniques neglect damping and so these updated models can’t be used for accurate prediction of complex frequency response functions (FRFs) and complex mode shapes. In this paper, a detailed comparison of prediction capabilities of parameter-based and non parameter-based damped updated methods for structural modifications is done. The suitability of paramter-based and non parameter-based damped updated models for predicting the effects of structural modifications is evaluated by laboratory experiment for the case of an F-shape test structure. It is concluded that parameter-based damped updated models are likely to perform better in predicting the effects of structural modifications.


2021 ◽  
Vol 79 (11) ◽  
pp. 1081-1093
Author(s):  
Essam Moustafa ◽  
Khalid Almitani ◽  
Hossameldin Hussein

Crack orientation, a critical parameter, significantly affects the dynamic properties of composite structures. Experimental free vibration tests were conducted on carbon fiber–reinforced polymer (CFRP) composite plates at room temperature with different crack orientations. Dynamic properties such as damping ratio, natural frequency, and storage modulus were measured using a four-channel dynamic pulse analyzer. Multi-sensors were mounted on the test plate to pick up the vibration signals. Experimental modal analysis was performed to identify the first three mode shapes of the defective plates. A numerical model using ANSYS software was developed via parametric investigation to predict the correlation between crack orientation and resonant frequencies with corresponding mode shapes. The orientation of the introduced cracks had a significant effect on the dynamic properties of CFRP composites. Vertical cracks had the most significant influence on the eigenvalues of the mode shape frequencies. Furthermore, the damping ratio was an effective method to detect the cracks in CFRP composites.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2020 ◽  
Vol 92 (6) ◽  
pp. 59-65
Author(s):  
G.P. TONKIH ◽  
◽  
D.A. CHESNOKOV ◽  
◽  

Most of Russian research about composite structure fire resistance are dedicated to the composite slab behavior. The composite beams fire resistance had been never investigated in enough volume: the temperature evaluation within the scope of the actual Russian design codes leads to the significant reduction in the shear connection strength. Meanwhile, there no correlation between the strength decreasing and type of the shear connection. The article provides an overview of the relevant researches and offers some approaches which could take into account bearing capacity reduction of the shear connectors within composite structures design.


Sign in / Sign up

Export Citation Format

Share Document