An Investigation of the Structural Dynamics of a Racing Yacht

1999 ◽  
Author(s):  
Frederic Louarn ◽  
Pandeli Temarel

The dynamic behaviour of a WOR 60 is investigated using three dimensional hydroelasticity theory. Global structural responses (e.g. stresses) in waves are obtained corresponding to the upright as well as to the more realistic heeled sailing configurations, revealing the connection between the ballast keel and the hull as being a critical area of the structure. For the "dry hull" analysis, a global finite element model has been developed, incorporating the hull and deck shell, the internal structure, the ballast keel and the rig together with rigging loads. The modular nature of the model has been used to assess the relative influence of each of the aforementioned components upon the required characteristic dynamic properties (e.g. natural frequencies and principal mode shapes). Regarding the "wet hull" analysis, a three dimensional Green's function technique, using pulsating sources distributed over the wetted surface, provides a numerical solution to the case of the yacht sailing in regular waves at arbitrary heading. Principal coordinates for the rigid body motions and flexible distortions of interest are evaluated and the latter are used to obtain the dynamic stresses in waves using modal summation. This paper will describe the modelling techniques used and discuss the applicability / limitations of hydroelasticity theory regarding this type of structures in the light of the results obtained for the upright and heeled operational conditions, as well as from the point of view of design aspects such as "L" and "T" keel configurations. The ABS design criteria will provide a practical reference for comparing the results from the dynamic analysis.

2012 ◽  
Vol 482-484 ◽  
pp. 2454-2459 ◽  
Author(s):  
Xu Da Qin ◽  
Cui Lu ◽  
Qi Wang ◽  
Hao Li ◽  
Lin Jing Gui

Based on the analysis of the working principle and structure characteristics of helical milling unit, the prototype’s three-dimensional model was built, the prototype’s finite element modal analysis was conducted, and the first 6 natural frequencies and their mode shapes were obtained. The finite element model is experimentally validated by comparing finite element and experimental modal’s parameters. This paper investigates the dynamic properties of prototype, and provides theoretical references for the subsequent dynamic analysis and structural optimization.


2017 ◽  
Vol 37 (3) ◽  
pp. 611-618 ◽  
Author(s):  
Bin Yang ◽  
Zheng Shi ◽  
Qun Wang ◽  
Feng Xiao ◽  
Tong-Tong Gu ◽  
...  

This study is based on a real finite element human head–neck model and concentrates on its numerical vibration characteristic. Frequency spectrum and mode shapes of the finite element model of human head–neck under mechanical vibration have been calculated. These vibration characteristics are in good agreement with the previous studies. The simulated fundamental frequency of 35.25 Hz is fairly similar to the published documents, and rarely reported modal responses such as “mastication” and flipping of nasal lateral cartilages modes, however, are introduced by our three-dimensional modal analysis. These additional modes may be of interest to surgeons or clinicians who are specialized in temporomandibular or rhinoplasty joint disorder. Modal validation in terms of modal shapes proposes a necessity for elaborate modeling to identify each individual part’s extra frequencies. Furthermore, it also studies the influence of damping on resonant frequencies and biomechanical responses. It is discovered that damping has an inverse proportionality between damping effect on natural frequency and that on biomechanical responses.


Author(s):  
Cihan Talebi ◽  
Bülent Acar ◽  
Gökhan O. Özgen

Abstract Due to their superior weight to strength ratio of composites to common metallic structures, composite technology is widely used in aerospace industry. Assessment of damage in composites has gained interest after a large number of accidents caused by unanticipated damages in the composite structures. Many different structural health monitoring applications were developed over the years due to the fact that composite materials may inherit damage from within, not always visible from surface. The most common types of errors encountered in the industry are due to misaligned fibers, a mix-up in ply order, and delaminations: all presenting changes in the vibro-acoustical performance of the composite structure. This paper discusses the change in the dynamic properties of a composite structure contains a manufacturing error such as a ply lay-up error, and a ply angle error. Both plate and cylindrical structure types were considered for the stated error types. Effect of symmetric errors, unsymmetrical and unbalanced errors, and mid-plane errors were considered in the case of ply orientations, and dynamic stiffness matrix was used to identify the error. Identification of the structure’s layup properties and manufacturing error identification is employed. From the measured modal properties of the structure, a back-tracking strategy was used to generate the ply lay-up of the composite structure. Prepreg plates of a single carbon fiber system and filament wound hybrid cylinders consisting of glass and carbon fibers were manufactured for testing. Modal tests on plates and cylindrical composite structures were performed and compared with the analysis. A good match between the finite element model and experiment was shown in natural frequencies and mode shapes.


Author(s):  
Michael Kawrza ◽  
Thomas Furtmüller ◽  
Christoph Adam ◽  
Roland Maderebner

AbstractIn this paper, the dynamic properties of a point-supported cross-laminated timber slab are studied in order to determine the elastic material parameters on this basis. A detailed experimental modal analysis of the slab with dimensions 16.0 m x 11.0 m is performed, and seven modes including the natural frequencies, damping ratios and mode shape components at 651 sensor positions are identified. The found mode shapes are complex due to environmental influences that occurred during the two-day measurement campaign. This error is corrected by eliminating these influences. A finite element model of the slab is presented, whose parameters in terms of material properties and boundary conditions are determined by a model updating procedure. Based on the modal properties of the seven experimentally identified modes, an accurate and robust parameter set is obtained, which can be used in further numerical studies of the considered CLT to check serviceability limit criteria.


2011 ◽  
Vol 422 ◽  
pp. 379-382
Author(s):  
Wei Chuang Quan ◽  
Mei Fa Huang ◽  
Zhi Yue Wang ◽  
Da Wei Zhang

Led die bonder used for bond lead frame and chip is one of the key equipment of led production line. The swing-arm is an important component of led die bonder and its dynamic characteristics will directly affect the piece accuracy. At present, the accuracy and efficiency of led die bonder are limited because of the vibration of the swing-arm. In solving this problem, a three-dimensional finite-element model for swing-arm is built to provide analytical frequencies and vibration modes. Then the modal distribution and vibration mode shapes for swing-arm are obtained after analyzing the modal by ansys10.0. Finally the dynamics effects of this structure by modal frequency and vibration mode are analyzed. The modal analysis of structural would provide the reference to dynamics analysis and structural optimization for swing-arm in practical use.


Author(s):  
Yozo Fujino ◽  
Masato Abe ◽  
Hajime Shibuya ◽  
Masato Yanagihara ◽  
Masashi Sato ◽  
...  

Forced and ambient dynamic tests of the Hakucho Bridge were carried out to study the dynamic characteristics of this suspension bridge. Dense-array measurement was employed in order to capture not only natural frequencies and damping, but also the mode shapes of the bridge. The natural frequencies and mode shapes obtained from the forced and ambient vibration tests agreed well with those calculated by a three-dimensional finite element model. A new method that combines the random decrement method with the Ibrahim time domain method is proposed to systematically identify the natural frequencies, damping, and mode shapes. This method is successfully applied to ambient vibration data. It is shown that the natural frequency of the first vertical bending mode decreases noticeably as the wind speed increases. It is also shown that the shape of the first vertical bending mode changes slightly near the towers, depending on the wind velocity; this finding indicates that the change may be associated with friction in the bearings at the towers. Finally, application of the Global Positioning System to measure static displacement of the girder is explained.


Author(s):  
Ivan Duvnjak ◽  
Domagoj Damjanović ◽  
Natalia Sabourova ◽  
Niklas Grip ◽  
Ulf Ohlsson ◽  
...  

<p>Damage assessment of structures includes estimation of location and severity of damage. Quite often it is done by using changes of dynamic properties, such as natural frequencies, mode shapes and damping ratios, determined on undamaged and damaged structures. The basic principle is to use dynamic properties of a structure as indicators of any change of its stiffness and/or mass. In this paper, two new methods for damage detection are presented and compared. The first method is based on comparison of normalised modal shape vectors determined before and after damage. The second method uses so-called &#119897;l-norm regularized finite element model updating. Some important properties of these methods are demonstrated using simulations on a Kirchhoff plate. The pros and cons of the two methods are discussed. Unique aspects of the methods are highlighted.</p>


2000 ◽  
Author(s):  
Byung Ju Dan ◽  
Yong Je Choi

Abstract A typical approach to a linear vibration analysis of an elastically supported single rigid body is to rearrange a dynamic model into a corresponding eigenvalue problem. From the geometrical point of view, the eigenvectors in the planar vibration analysis can be interpreted as pure rotations about the vibration center or pure translations. In a three dimensional space, they represent repetitive twisting motions about the axes of vibrations. By taking a geometrical approach to the vibration analysis, the vibration mode shapes may be better understood. In this paper, the influence of variable location of a mass center on the locations of the axes of vibrations and the natural frequencies are investigated by means of the locus of the axis of vibration expressed in analytical form, which represents the geometrical locus of the eigenvector. A numerical example is used to clearly illustrate the vibration phenomena of an optical pick-up used in an information storage device.


2006 ◽  
Vol 22 (3) ◽  
pp. 781-802 ◽  
Author(s):  
Derek Skolnik ◽  
Ying Lei ◽  
Eunjong Yu ◽  
John W. Wallace

Identification of the modal properties of the UCLA Factor Building, a 15-story steel moment-resisting frame, is performed using low-amplitude earthquake and ambient vibration data. The numerical algorithm for subspace state-space system identification is employed to identify the structural frequencies, damping ratios, and mode shapes corresponding to the first nine modes. The frequencies and mode shapes identified based on the data recorded during the 2004 Parkfield earthquake ( Mw=6.0) are used to update a three-dimensional finite element model of the building to improve correlation between analytical and identified modal properties and responses. A linear dynamic analysis of the updated model excited by the 1994 Northridge earthquake is performed to assess the likelihood of structural damage.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
E. Ercan ◽  
A. Nuhoglu

This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed.


Sign in / Sign up

Export Citation Format

Share Document