Multi-Level Design of Tubular Joints

Author(s):  
Søren F. Ø. Jensen ◽  
Lars Vabbersgaard Andersen ◽  
Ronnie R. Pedersen ◽  
Martin Bjerre Nielsen

In offshore jacket design, it has long been recognized that an accurate global structural model requires implementation of the effects of local joint flexibility (LJF). However, there is still no general method for implementing these effects accurately and efficiently without complicating the application of loads. The literature describes several techniques for determining LJFs using parametric formulas and implementing these in global models of a jacket structure. These techniques are simple but associated with uncertainties and a risk of compromising the accuracy of the global model. Alternative methods, such as the use of superelements, provide very accurate results but complicate the consistent application of external loads as well as postprocessing. This paper introduces a new methodology which is called the Correction Matrix Methodology. This allows the effects of LJF from detailed three-dimensional (3D) finite-element (FE) shell or solid models to be incorporated in a global beam FE model via a simple correction matrix. The effectiveness of the methodology is improved by using interpolation between a limited number of correction matrices. The new methodology provides exact results when correction matrices associated with the actual geometry are applied. When using the interpolation procedure, the methodology provides accurate results and computational efficiency when the database has been established. The Correction Matrix Methodology is a significant improvement of the conventional methods for modelling LJF and is currently being implemented in a general form for arbitrary joints in Rambolls Offshore Structural Analysis Program (ROSAP).

2004 ◽  
Vol 08 (04) ◽  
pp. 155-165 ◽  
Author(s):  
Ee-Chon Teo ◽  
Qing-Hang Zhang ◽  
Kian-Wee Tan ◽  
Vee-Sin Lee

A detailed three-dimensional head-neck (C0–C7) finite element (FE) model developed based on the actual geometry of an embalmed human cadaver specimen was exercised to dictate the motions of the cervical spine under dynamic loadings. The predicted results analyzed under vertex drop impact were compared against experimental study to validate the FE model. The validated C0–C7 FE model was then further analyzed to investigate the response of the whole head-neck complex under 10G-ejection condition. From the simulation of ejection process, obvious hyper-flexion of the head-neck complex could be found. The peak flexion angles of all the lower motion segments were beyond physiological tolerance indicating a potential injury in these regions. Furthermore, the stress values in the spine were also related to the magnitudes of rotation of the motion segments. During the acceleration onset stage, the maximum stresses in the bone components were low. After that, the stress values increased sharply into the dangerous range with increased rotational angles. The effect of muscles in alleviating the potential damage in the neck is significant. It was implied that it is important for pilots to stiffen the neck before ejection to avoid severe cervical injury.


2005 ◽  
Vol 09 (01) ◽  
pp. 1-7 ◽  
Author(s):  
Ee-Chon Teo ◽  
Qing-Hang Zhang ◽  
Hong-Wan Ng

A detailed three-dimensional head-neck (C0–C7) finite element (FE) model developed previously based on the actual geometry of a cadaveric specimen was used to characterize the whiplash phenomenon of the head-neck region during rear-end collision. A maximum rear impact pulse of 8.5 G of acceleration was applied to C7. The effects of a headrest on the responses of head-neck complex were also discussed. The study demonstrates the effectiveness of the current C0–C7 FE model in characterizing the gross responses of human cervical spine under whiplash. The results showed that during whiplash, the lower cervical levels, especially the C6–C7, experience hyperextension in the early phase of acceleration. The whole cervical spine is at risk of extension injuries rather than flexion injuries in whiplash. The use of a proper headrest can effectively reduce the cervical spine from extension injury during the acceleration phase of cervical spine in whiplash.


Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 632 ◽  
Author(s):  
Ahmed M. Sayed

The perforated steel sheets have many uses, so they should be studied under the influence of the uniaxial tensile load. The presence of these holes in the steel sheets certainly affects the mechanical properties. This paper aims at studying the behavior of the stress-strain engineering relationships of the perforated steel sheets. To achieve this, the three-dimensional finite element (FE) model is mainly designed to investigate the effect of this condition. Experimental tests were carried out on solid specimens to be used in the test of model accuracy of the FE simulation. Simulation testing shows that the FE modeling revealed the ability to calculate the stress-strain engineering relationships of perforated steel sheets. It can be concluded that the effect of a perforated rhombus shape is greater than the others, and perforated square shape has no effect on the stress-strain engineering relationships. The efficiency of the perforated staggered or linearly distribution shapes with the actual net area on the applied loads has the opposite effect, as it reduces the load capacity for all types of perforated shapes. Despite the decrease in load capacity, it improves the properties of the steel sheets.


2013 ◽  
Vol 69 (12) ◽  
pp. i85-i86 ◽  
Author(s):  
Youssef Ben Smida ◽  
Abderrahmen Guesmi ◽  
Mohamed Faouzi Zid ◽  
Ahmed Driss

The title compound, trisodium dicobalt(II) (arsenate/phosphate) (diarsenate/diphosphate), was prepared by a solid-state reaction. It is isostructural with Na3Co2AsO4As2O7. The framework shows the presence of CoX22O12(X2 is statistically disordered with As0.95P0.05) units formed by sharing corners between Co1O6octahedra andX22O7groups. These units form layers perpendicular to [010]. Co2O6octahedra andX1O4(X1 = As0.54P0.46) tetrahedra form Co2X1O8chains parallel to [001]. Cohesion between layers and chains is ensured by theX22O7groups, giving rise to a three-dimensional framework with broad tunnels, running along thea- andc-axis directions, in which the Na+ions reside. The two Co2+cations, theX1 site and three of the seven O atoms lie on special positions, with site symmetries 2 andmfor the Co,mfor theX1, and 2 andm(× 2) for the O sites. One of two Na atoms is disordered over three special positions [occupancy ratios 0.877 (10):0.110 (13):0.066 (9)] and the other is in a general position with full occupancy. A comparison between structures such as K2CdP2O7, α-NaTiP2O7and K2MoO2P2O7is made. The proposed structural model is supported by charge-distribution (CHARDI) analysis and bond-valence-sum (BVS) calculations. The distortion of the coordination polyhedra is analyzed by means of the effective coordination number.


1987 ◽  
Vol 105 (1) ◽  
pp. 387-395 ◽  
Author(s):  
J A Traas ◽  
J H Doonan ◽  
D J Rawlins ◽  
P J Shaw ◽  
J Watts ◽  
...  

We have studied the F-actin network in cycling suspension culture cells of carrot (Daucus carota L.) using rhodaminyl lysine phallotoxin (RLP). In addition to conventional fixation with formaldehyde, we have used two different nonfixation methods before adding RLP: extracting cells in a stabilizing buffer; inducing transient pores in the plasma membrane with pulses of direct current (electroporation). These alternative methods for introducing RLP revealed additional features of the actin network not seen in aldehyde-fixed cells. The three-dimensional organization of this network in nonflattened cells was demonstrated by projecting stereopairs derived from through-focal series of computer-enhanced images. F-actin is present in interphase cells in four interconnected configurations: a meshwork surrounding the nucleus; thick cables in transvacuolar strands and deep in the cytoplasm; a finer network of bundles within the cortical cytoplasm; even finer filaments that run in ordered transverse array around the cell periphery. The actin network is organized differently during division but it does not disappear as do the cortical microtubules. RLP stains a central filamentous cortical band as the chromatin begins to condense (preprophase); it stains the mitotic spindle (as recently shown by Seagull et al. [Seagull, R. W., M. Falconer, and C. A. Weerdenburg, 1987, J. Cell Biol., 104:995-1004] for aldehyde fixed suspension cells) and the cytokinetic apparatus (as shown by Clayton, L., and C. W. Lloyd, 1985, Exp. Cell Res., 156:231-238). However, it is now shown that an additional network of F-actin persists in the cytoplasm throughout division associating in turn with the preprophase band, the mitotic spindle, and the cytokinetic phragmoplast.


2002 ◽  
Vol 124 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Tammy L. Haut Donahue ◽  
M. L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (i.e., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.


Author(s):  
Demeng Che ◽  
Jacob Smith ◽  
Kornel F. Ehmann

The unceasing improvements of polycrystalline diamond compact (PDC) cutters have pushed the limits of tool life and cutting efficiency in the oil and gas drilling industry. However, the still limited understanding of the cutting mechanics involved in rock cutting/drilling processes leads to unsatisfactory performance in the drilling of hard/abrasive rock formations. The Finite Element Method (FEM) holds the promise to advance the in-depth understanding of the interactions between rock and cutters. This paper presents a finite element (FE) model of three-dimensional face turning of rock representing one of the most frequent testing methods in the PDC cutter industry. The pressure-dependent Drucker-Prager plastic model with a plastic damage law was utilized to describe the elastic-plastic failure behavior of rock. A newly developed face turning testbed was introduced and utilized to provide experimental results for the calibration and validation of the formulated FE model. Force responses were compared between simulations and experiments. The relationship between process parameters and force responses and the mechanics of the process were discussed and a close correlation between numerical and experimental results was shown.


Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


Sign in / Sign up

Export Citation Format

Share Document