Techniques for Controlling Airflow Distribution in Raised-Floor Data Centers

Author(s):  
Kailash C. Karki ◽  
Suhas V. Patankar ◽  
Amir Radmehr

In raised-floor data centers, the airflow rates through the perforated tiles must meet the cooling requirements of the computer servers placed next to the tiles. The data centers house a wide range of equipment, and the heat load pattern on the floor can be quite arbitrary and changes as the data center evolves. To achieve optimum utilization of the floor space and the flexibility for rearrangement and retrofitting, the designers and managers of data centers must be able to modify the airflow rates through the perforated tiles. The airflow rates through the perforated tiles are governed primarily by the pressure distribution under the raised floor. Thus, the key to modifying the flow rates is to influence the flow field in the plenum. This paper discusses a number of techniques that can be used for controlling airflow distribution. These techniques involve changing the plenum height and open area of perforated tiles, and installing thin (solid and perforated) partitions in the plenum. A number of case studies, using a mathematical model, are presented to demonstrate the effectiveness of these techniques.

Author(s):  
Xiao Ping Wu ◽  
Masataka Mochizuki ◽  
Koichi Mashiko ◽  
Thang Nguyen ◽  
Tien Nguyen ◽  
...  

In this paper, design and economic analysis for applying a novel type of heat pipe into cold energy storage systems have been proposed and discussed. The heat pipe cold energy storage systems can be designed into several types that are ice storage, cold water storage and pre-cool heat exchanger. Those systems can be used for co-operating with conventional chiller system for cooling data centers. The heat load used for discussing in this paper is 8800 kW which represents a large scale data center. The methodology addressed in this paper can be also converted into the middle and small sizes of the data centers. This type of storage system will help to downsize the chiller and decrease its running time that would be able to save significant electricity cost and decrease green house gas emissions from the electricity generation. The proposed systems can be easily connected into the existing conventional systems without major design changes. The analysis in this paper is using Air Freezing Index AFI >= 400 °C-days/year for sizing the heat pipe modules. For the locations where AFI has different value the storage size will be varied accordingly. The paper also addressed a result that an optimum size of cold energy storage system that should be designed at a level to handle 60% of total yearly heat load of a data center.


Author(s):  
Sadegh Khalili ◽  
Mohammad I. Tradat ◽  
Kourosh Nemati ◽  
Mark Seymour ◽  
Bahgat Sammakia

In raised floor data centers, tiles with high open area ratio or complex understructure are used to fulfill the demand of today’s high-density computing. Using more open tiles reduces pressure drop across the raised floor with the potential advantages of increased airflow and lower noise. However, it introduces the disadvantage of increased non-uniformity of airflow distribution. In addition, there are various tile designs available on the market with different opening shapes or understructures. Furthermore, a physical separation of cold and hot aisles (containment) has been introduced to minimize the mixing of cold and hot air. In this study, three types of floor tiles with different open area, opening geometry, and understructure are considered. Experimentally validated detail models of tiles were implemented in CFD simulations to address the impact of tile design on the cooling of IT equipment in both open and enclosed aisle configurations. Also, impacts of under-cabinet leakage on the IT equipment inlet temperature in the provisioned and under-provisioned scenarios are studied. Finally, a predictive equation for the critical under-provisioning point that can lead to a no-flow condition in IT equipment with weaker airflow systems is presented.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Russell Tipton ◽  
Bruce Murray ◽  
Bahgat G. Sammakia ◽  
...  

The heat dissipated by high performance IT equipment such as servers and switches in data centers is increasing rapidly, which makes the thermal management even more challenging. IT equipment is typically designed to operate at a rack inlet air temperature ranging between 10 °C and 35 °C. The newest published environmental standards for operating IT equipment proposed by ASHARE specify a long term recommended dry bulb IT air inlet temperature range as 18°C to 27°C. In terms of the short term specification, the largest allowable inlet temperature range to operate at is between 5°C and 45°C. Failure in maintaining these specifications will lead to significantly detrimental impacts to the performance and reliability of these electronic devices. Thus, understanding the cooling system is of paramount importance for the design and operation of data centers. In this paper, a hybrid cooling system is numerically modeled and investigated. The numerical modeling is conducted using a commercial computational fluid dynamics (CFD) code. The hybrid cooling strategy is specified by mounting the in row cooling units between the server racks to assist the raised floor air cooling. The effect of several input variables, including rack heat load and heat density, rack air flow rate, in row cooling unit operating cooling fluid flow rate and temperature, in row coil effectiveness, centralized cooling unit supply air flow rate, non-uniformity in rack heat load, and raised floor height are studied parametrically. Their detailed effects on the rack inlet air temperatures and the in row cooler performance are presented. The modeling results and corresponding analyses are used to develop general installation and operation guidance for the in row cooler strategy of a data center.


Author(s):  
Veerendra Mulay ◽  
Saket Karajgikar ◽  
Dereje Agonafer ◽  
Roger Schmidt ◽  
Madhusudan Iyengar

The power trend for Server systems continues to grow thereby making thermal management of Data centers a very challenging task. Although various configurations exist, the raised floor plenum with Computer Room Air Conditioners (CRACs) providing cold air is a popular operating strategy. The air cooling of data center however, may not address the situation where more energy is expended in cooling infrastructure than the thermal load of data center. Revised power trend projections by ASHRAE TC 9.9 predict heat load as high as 5000W per square feet of compute servers’ equipment footprint by year 2010. These trend charts also indicate that heat load per product footprint has doubled for storage servers during 2000–2004. For the same period, heat load per product footprint for compute servers has tripled. Amongst the systems that are currently available and being shipped, many racks exceed 20kW. Such high heat loads have raised concerns over limits of air cooling of data centers similar to air cooling of microprocessors. A hybrid cooling strategy that incorporates liquid cooling along with air cooling can be very efficient in these situations. A parametric study of such solution is presented in this paper. A representative data center with 40 racks is modeled using commercially available CFD code. The variation in rack inlet temperature due to tile openings, underfloor plenum depths is reported.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Suhas V. Patankar

This paper deals with the distribution of airflow and the resulting cooling in a data center. First, the cooling challenge is described and the concept of a raised-floor data center is introduced. In this arrangement, cooling air is supplied through perforated tiles. The flow rates of the cooling air must meet the cooling requirements of the computer servers placed next to the tiles. These airflow rates are governed primarily by the pressure distribution under the raised floor. Thus, the key to modifying the flow rates is to influence the flow field in the under-floor plenum. Computational fluid dynamics (CFD) is used to provide insight into various factors affecting the airflow distribution and the corresponding cooling. A number of ways of controlling the airflow distribution are explored. Then attention is turned to the above-floor space, where the focus is on preventing the hot air from entering the inlets of computer serves. Different strategies for doing this are considered. The paper includes a number of comparisons of measurements with the results of CFD simulations.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Emad Samadiani ◽  
Yogendra Joshi ◽  
Hendrik Hamann ◽  
Madhusudan K. Iyengar ◽  
Steven Kamalsy ◽  
...  

In this paper, an effective and computationally efficient proper orthogonal decomposition (POD) based reduced order modeling approach is presented, which utilizes selected sets of observed thermal sensor data inside the data centers to help predict the data center temperature field as a function of the air flow rates of computer room air conditioning (CRAC) units. The approach is demonstrated through application to an operational data center of 102.2 m2 (1100 square feet) with a hot and cold aisle arrangement of racks cooled by one CRAC unit. While the thermal data throughout the facility can be collected in about 30 min using a 3D temperature mapping tool, the POD method is able to generate temperature field throughout the data center in less than 2 s on a high end desktop personal computer (PC). Comparing the obtained POD temperature fields with the experimentally measured data for two different values of CRAC flow rates shows that the method can predict the temperature field with the average error of 0.68 °C or 3.2%. The maximum local error is around 8 °C, but the total number of points where the local error is larger than 1 °C, is only ∼6% of the total domain points.


Author(s):  
Emad Samadiani ◽  
Yogendra Joshi ◽  
Hendrik Hamann ◽  
Madhusudan K. Iyengar ◽  
Steven Kamalsy ◽  
...  

In this paper, an effective and computationally efficient Proper Orthogonal Decomposition (POD) based reduced order modeling approach is presented, which utilizes selected sets of observed thermal sensor data inside the data centers to help predict the data center temperature field as a function of the air flow rates of Computer Room Air Conditioning (CRAC) units. The approach is demonstrated through application to an operational data center of 102.2 m2 (1,100 square feet) with a hot and cold aisle arrangement of racks cooled by one CRAC unit. While the thermal data throughout the facility can be collected in about 30 minutes using a 3D temperature mapping tool, the POD method is able to generate temperature field throughout the data center in less than 2 seconds on a high end desktop PC. Comparing the obtained POD temperature fields with the experimentally measured data for two different values of CRAC flow rates shows that the method can predict the temperature field with the average error of 0.68 °C or 3.2%.


Author(s):  
Mullaivendhan Varadharasan ◽  
Dereje Agonafer ◽  
Ahmed Al Khazraji ◽  
Jimil Shah ◽  
Ashwin Siddarth ◽  
...  

Direct evaporative cooling (DEC) is widely used in the data center cooling units to maintain the air condition inside the data centers. Often, the flow rate of the water over the wet cooling media in this DEC process is frequently varied to maintain the air condition inside the data centers based on changing weather conditions. Though the adopted method helps to control the air temperature and relative humidity, the scale formation occurs on the surface of wet cooling media due to the frequent variation of the flow rate and deposition of minerals present in the water at low flow rate values, which increases the total weight of the wet cooling media and it can lead to a wet cooling media collapse. In this paper an alternative and simplified method to control the air condition is presented. A vertically split wet cooling media is designed and tested in a commercial CFD tool to analyze the temperature and relative humidity parameters of the inlet and outlet air to the wet cooling media, in this approach the sections of the media can either be completely wet or completely dry which can potentially avoid the scale formation on the surface of the wet cooling media. In addition to the temperature and relative humidity parameters against the air flow rates, the pressure drop and cooling efficiency values for varied air flow rates are studied. The vertically split wet cooling media configurations are achieved by sectioning the media in to equal and unequal sections. In the equal configuration, media has been tested for 0%, 50% and 100% wetting conditions, and in the unequal configuration, media has been tested for 0%, 33%, 66% and 100% wetting conditions. The test results are used to emphasis the advantage of this staged wetting method and gives a possible solution to the scale formation problem on the wet cooling media during the direct evaporative cooling process in the data center.


Author(s):  
Veerendra Mulay ◽  
Dereje Agonafer ◽  
Roger Schmidt

The power trend for Server systems continues to grow thereby making thermal management of Data centers a very challenging task. Although various configurations exist, the raised floor plenum with Computer Room Air Conditioners (CRACs) providing cold air is a popular operating strategy. The air cooling of data center however, may not address the situation where more energy is expended in cooling infrastructure than the thermal load of data center. Revised power trend projections by ASHRAE TC 9.9 predict heat load as high as 5000W per square feet of compute servers’ equipment footprint by year 2010. These trend charts also indicate that heat load per product footprint has doubled for storage servers during 2000–2004. For the same period, heat load per product footprint for compute servers has tripled. Amongst the systems that are currently available and being shipped, many racks exceed 20kW. Such high heat loads have raised concerns over limits of air cooling of data centers similar to air cooling of microprocessors. Thermal management of such dense data center clusters using liquid cooling is presented.


Author(s):  
Monem H. Beitelmal ◽  
Zhikui Wang ◽  
Carlos Felix ◽  
Cullen Bash ◽  
Christopher Hoover ◽  
...  

Local airflow distribution in data center environments has historically been accomplished through ventilation tiles distributed over a raised floor air distribution plenum. The tiles are initially configured upon the commissioning of the facility and, as IT equipment configuration changes with time, the tiles are adjusted accordingly. However, tile adjustment is a manual process that is error-prone and often non-intuitive. Tile flow rates are a strong function of under floor plenum pressure distribution which is subject to change as tile layouts are reconfigured. Thermal models are often developed to assist with layout changes, but these models can be time-consuming to generate and require skilled users to achieve accurate results. This paper presents an adaptive vent tile (AVT) for use in raised floor data centers that can adapt to the needs of nearby IT equipment. We present a multi-input-multi-output (MIMO) AVT controller that automatically and dynamically adjusts a multiplicity of AVT openings in coordination such that thermal management requirements are met with minimum use of airflow. We describe the development of dynamic models and algorithm design of the MIMO controller. The controller was evaluated with a set of AVT units in a production data center environment. Results show that the controller can optimize local airflow distribution, provide fine-grained rack intake temperature control and respond to disturbances in a manner that is not achievable through static distribution of tiles.


Sign in / Sign up

Export Citation Format

Share Document