A Flow Visualization Study on the Temperature Oscillations Inside a Loop Heat Pipe With Flat Evaporator

Author(s):  
Dongchuan Mo ◽  
Guansheng Zou ◽  
Shushen Lu ◽  
L. Winston Zhang

This paper presents a flow visualization study on the temperature oscillations inside a loop heat pipe in order to gain a better understanding of its heat transfer characteristics. A flat loop heat pipe (FLHP) with a flat evaporator instead of a typical cylindrical evaporator was built using copper as the shell and water as the working fluid. An experimental setup was designed by using the transparent material instead of copper in some parts of the FLHP. The experiment results showed that there were at least three different flow patterns in the vapor line as the heating power increased. The temperatures in different locations of the loop oscillated even when the heating power was kept constant. The largest amplitude of the temperature oscillation in the loop was located at the condenser outlet. It was found that the temperature oscillation at the condenser outlet could be divided into two types, one with smaller amplitudes and the other with larger amplitudes. The smaller amplitude temperature oscillations were always there when the heating power was increased step by step, while the larger amplitude temperature oscillations would disappear initially and show up later. Finally, the location of the vapor/liquid interface inside the condenser varied with the temperature oscillations, resulting in liquid/vapor interface motion in the compensation chamber.

2011 ◽  
Vol 71-78 ◽  
pp. 3806-3809
Author(s):  
Xian Feng Zhang ◽  
Shuang Feng Wang

The present work experimentally investigated the operating characteristics of a miniature loop heat pipe (LHP) under different power cycle. The miniature LHP with flat evaporator of 8mm thick is made of copper. The evaporator with sintered copper power wick is in series structure with compensation chamber. Water is working fluid. It is found that the LHP can start up at heat load of 15W with temperature oscillation and the maximum heat load is 160W with Rl=0.068°C/W. The LHP operates unstably under low heat load. The oscillating frequency of temperature rises with heat load increased. The operating performance of the LHP is affected by the power cycle.


Author(s):  
B. P. d’Entremont ◽  
J. M. Ochterbeck

In this investigation, a Loop Heat Pipe (LHP) evaporator has been studied using a borescope inserted through the compensation chamber into the liquid core. This minimally intrusive technique allows liquid/vapor interactions to be observed throughout the liquid core and compensation chamber. A low conductivity ceramic was used for the wick and ammonia as the working fluid. Results indicate that buoyancy driven flows, both two-phase and single-phase, play essential roles in evacuating excess heat from the core, which explains the several differences in performance between horizontal and vertical orientations of the evaporator. This study also found no discernable effect of the pre-start fill level of the compensation chamber on thermal performance during startup at moderate and high heat loads.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2403 ◽  
Author(s):  
Eui Guk Jung ◽  
Joon Hong Boo

Part I of this study introduced a mathematical model capable of predicting the steady-state performance of a loop heat pipe (LHP) with enhanced rationality and accuracy. Additionally, investigation of the effect of design parameters on the LHP thermal performance was also reported in Part I. The objective of Part II is to experimentally verify the utility of the steady-state analytical model proposed in Part I. To this end, an experimental device comprising a flat-evaporator LHP (FLHP) was designed and fabricated. Methanol was used as the working fluid, and stainless steel as the wall and tubing-system material. The capillary structure in the evaporator was made of polypropylene wick of porosity 47%. To provide vapor removal passages, axial grooves with inverted trapezoidal cross-section were machined at the inner wall of the flat evaporator. Both the evaporator and condenser components measure 40 × 50 mm (W × L). The inner diameters of the tubes constituting the liquid- and vapor-transport lines measure 2 mm and 4 mm, respectively, and the lengths of these lines are 0.5 m. The maximum input thermal load was 90 W in the horizontal alignment with a coolant temperature of 10 °C. Validity of the said steady-state analysis model was verified for both the flat and cylindrical evaporator LHP (CLHP) models in the light of experimental results. The observed difference in temperature values between the proposed model and experiment was less than 4% based on the absolute temperature. Correspondingly, a maximum error of 6% was observed with regard to thermal resistance. The proposed model is considered capable of providing more accurate performance prediction of an LHP.


Author(s):  
Randeep Singh ◽  
Aliakbar Akbarzadeh ◽  
Masataka Mochizuki ◽  
Thang Nguyen ◽  
Vijit Wuttijumnong

Loop heat pipe (LHP) is a very versatile heat transfer device that uses capillary forces developed in the wick structure and latent heat of evaporation of the working fluid to carry high heat loads over considerable distances. Robust behaviour and temperature control capabilities of this device has enable it to score an edge over the traditional heat pipes. In the past, LHPs has been invariably assessed for electronic cooling at large scale. As the size of the thermal footprint and available space is going down drastically, miniature size of the LHP has to be developed. In this paper, results of the investigation on the miniature LHP (mLHP) for thermal control of electronic devices with heat dissipation capacity of up to 70 W have been discussed. Copper mLHP with disk-shaped flat evaporator 30 mm in diameter and 10 mm thickness was developed. Flat evaporators are easy to attach to the heat source without any need of cylinder-plane-reducer saddle that creates additional thermal resistance in the case of cylindrical evaporators. Wick structure made from sintered nickel powder with pore size of 3–5 μm was able to provide adequate capillary forces for the continuos circulation of the working fluid, and successfully transport heat load at the required distance of 60 mm. Heat was transferred using 3 mm ID copper tube with vapour and liquid lines of 60 mm and 200 mm length respectively. mLHP showed very reliable start up at different heat loads and was able to achieve steady state without any symptoms of wick dry-out. Tests were conducted on the mLHP with evaporator and condenser at the same level. Total thermal resistance, R total of the mLHP came out to be in the range of 1–4°C/W. It is concluded from the outcomes of the investigation that mLHP with flat evaporator can be effectively used for the thermal control of the electronic equipments with restricted space and high heat flux chipsets.


2020 ◽  
Vol 171 ◽  
pp. 115073 ◽  
Author(s):  
Zikang Zhang ◽  
Hao Zhang ◽  
Xiaotian Lai ◽  
Zhichun Liu ◽  
Wei Liu

Author(s):  
Nima Atabaki ◽  
B. Rabi Baliga

A network thermofluid model of a loop heat pipe (LHP) operating under steady-state conditions is presented. Attention is focused on a simple LHP, with one evaporator, a vapor transport line, a single condenser, a liquid transport line, and a compensation chamber. The evaporator is an internally grooved circular pipe, with a cylindrical wick installed on its inner surface. The wick is made of a sintered metal. The condenser is a horizontal tube covered with a high-thermal-conductivity sleeve, and the outer temperature of the sleeve is maintained at a constant sink temperature. Quasi one-dimensional mathematical models of the fluid flow and heat transfer in each of the elements of the LHP, and collectively of the entire LHP, are proposed and discussed. The working fluid considered in this work is ammonia, but the proposed model can work with any suitable fluid. Results pertaining to the LHP performance for a range of operating conditions are presented, compared (qualitatively) to corresponding results of an earlier experimental investigation in the literature, and discussed.


Author(s):  
Dong-chuan Mo ◽  
Guan-sheng Zou ◽  
Shu-shen Lu

Loop heat pipes are high efficient heat transfer loops/devices. Compared to the typical loop heat pipe with cylinder evaporator, loop heat pipe with flat evaporator (flat loop heat pipe, FLHP) can reduce the thermal resistance between the evaporator and the heat loads. In order to remove the heat leak from the evaporator to the compensation chamber to reduce the operation temperature, a new type of FLHP coupling the compensation chamber and the condenser has been developed. Experiments have been conducted to compare the heat transfer characteristics between the normal type and the new type of FLHP. Part of the heat lead from the evaporator to the compensation chamber can be removed in the new type of FLHP, so it gives better heat transfer performance than the normal one. Results show that, the temperatures in the loop of the new type of FLHP are much more stable than the normal one. The evaporator temperatures and the total thermal resistances of the new type are much lower than those of the normal type. For the normal type of FLHP, it may be failed to start up under low power, and usually the larger temperature oscillation will happen. With the power increasing, the frequency of the oscillation is increasing. When the applied power is large enough, the loop can keep running in the design way, and the large temperature oscillation will disappear.


Author(s):  
Nicholas A. Roche ◽  
Martin Cleary ◽  
Teresa B. Peters ◽  
Evelyn N. Wang ◽  
John G. Brisson

We report the design and analysis of a novel compensation chamber for use in PHUMP, a multiple condenser loop heat pipe (LHP) capable of dissipating 1000 W. The LHP is designed for integration into a high performance air-cooled heat sink to address thermal management challenges in advanced electronic systems. The compensation chamber is integrated into the evaporator of the device and provides a region for volumetric expansion of the working fluid over a range of operating temperatures. Additionally, the compensation chamber serves to set the liquid side pressure of the device, preventing both flooding of the condensers and dry out of the evaporator. The compensation chamber design was achieved through a combination of computational simulation using COMSOL Multiphysics and models developed based on experimental work of previous designs. The compensation chamber was fabricated as part of the evaporator using Copper and Monel sintered wicks with various particle sizes to achieve the desired operating characteristics. Currently, the compensation chamber is being incorporated into a multiple condenser LHP for a high performance air-cooled heat sink.


Author(s):  
Eric Golliher ◽  
Jentung Ku ◽  
Anthony Licari ◽  
James Sanzi

NASA plans human exploration near the South Pole of the Moon, and other locations where the environment is extremely cold. This paper reports on the heat transfer performance of a loop heat pipe exposed to extreme cold under the simulated reduced gravitational environment of the Moon. A common method of spacecraft thermal control is to use a loop heat pipe with ammonia working fluid. Typically, a small amount of heat is provided either by electrical heaters or by environmental design, such that the loop heat pipe condenser temperature never drops below the freezing point of ammonia. The concern is that a liquid-filled, frozen condenser would not re-start, or that a thawing condenser would damage the tubing due to the expansion of ammonia upon thawing. This paper reports the results of an experimental investigation of a novel approach to avoid these problems. The loop heat pipe compensation chamber is conditioned such that all the ammonia liquid is removed from the condenser and the loop heat pipe is non-operating. The condenser temperature is then reduced to below that of the ammonia freezing point. The loop heat pipe is then successfully re-started.


Sign in / Sign up

Export Citation Format

Share Document