Dynamic Analysis of Hybrid Cooling Data Centers Subjects to the Failure of CRAC Units

Author(s):  
Tianyi Gao ◽  
Emad Samadiani ◽  
Roger Schmidt ◽  
Bahgat Sammakia

Thermal management of high power data centers poses challenges due to the high operational cost which is made worse due to the many inefficiencies that arise in them. Additional challenges arise due to the dynamic behaviors that occur during normal operation, and also during emergencies such as power outages or failure of some or all of the cooling equipment. Water and hybrid air plus water cooled data centers are an alternate cooling solution combining liquid cooling systems, such as rear door heat exchangers located within the racks themselves, in addition to the traditional raised floor cold aisle air cooling system. Such a solution may be used when some of the equipment in a data center is upgraded to higher end and higher power equipment which may not be manageable with the existing air cooling system. For a data center with a hybrid cooling system, the cold air supply and the cold water supply should increase in case of an emergency, such as a CRAC (Computer Room Air Conditioner) units’ failure. In this paper, a detailed computational study is conducted to investigate the dynamic response of the impact of a CRAC failure on both water side and air side in a representative hybrid cooling room. The room studied is an air cooled data center using the common cold aisle approach, with rear door heat exchangers installed on all of the racks. CRAC failure is investigated in a hybrid cooling room. The variation and fluctuation in an average rack inlet temperature, and inlet temperatures at different detail locations are presented in plots, showing the dynamic performance of a hybrid cooling data center subjected to the different CRAC failure scenarios. Different response time studies are also presented in this paper.

Author(s):  
Tianyi Gao ◽  
Emad Samadiani ◽  
Bahgat Sammakia ◽  
Roger Schmidt

Data centers consume a considerable amount of energy which is estimated to be about 2 percent of the total electrical energy consumed in the US, and their power consumption continues to increase every year. It is also estimated that roughly 30–40 percent of the total energy used in a data center is due to the thermal management systems. So, there is a strong need for better cooling methods which could improve the cooling capacity and also reduce energy consumption for high density data centers. In this regard, liquid cooling systems have been utilized to deal with demanding cooling and energy efficiency requirements in high density data centers. In this paper, a hybrid cooling system in data centers is investigated. In addition to traditional raised floor, cold aisle-hot aisle configuration, a liquid-air hybrid cooling system consisting of rear door heat exchangers attached to the back of racks is considered. The room is analyzed numerically using two CFD based simulation approaches for modeling rear door heat exchangers that are introduced in this study. The presented model is used in the second section of the paper to compare the hybrid cooling system with traditional air cooling systems. Several case studies are taken into account including the power increases in the racks and CRAC unit failure scenarios. A comparison is made between the hybrid cooling room and a purely air cooled room based on the rack inlet temperatures. Also in this study, total energy consumption by the cooling equipment in both air-cooled and hybrid data centers are modeled and compared with each other for different scenarios. The results show that under some circumstances the hybrid cooling could be an alternative to meet the ASHRAE recommended inlet air temperatures, while at the same time it reduces the cooling energy consumption in high density data centers.


Author(s):  
Seungho Mok ◽  
Yogendra K. Joshi ◽  
Satish Kumar ◽  
Ronald R. Hutchins

This study focuses on developing computational models for hybrid or liquid cooled data centers that may reutilize waste heat. A data center with 17 fully populated racks with IBM LS20 blade servers, which consumes 408 kW at the maximum load, is considered. The hybrid cooling system uses a liquid to remove the heat produced by high power components, while the remaining low power components are cooled by air. The paper presents three hybrid cooling scenarios. For the first two cases, air is cooled by direct expansion (DX) cooling system with air-side economizer. Unlike the cooling air, two different approaches for cooling water are investigated: air-cooled chiller and ground water through liquid-to-liquid heat exchanger. Waste heat re-use for pre-heating building water in co-located facilities is also investigated for the second scenario. In addition to the hybrid cooling models, a fully liquid cooling system is modeled as the third scenario for comparison with hybrid cooling systems. By linking the computational models, power usage effectiveness (PUE) for all scenarios can be calculated for selected geographical locations and data center parameters. The paper also presents detailed analyses of the cooling components considered and comparisons of the PUE results.


Author(s):  
Veerendra Mulay ◽  
Saket Karajgikar ◽  
Dereje Agonafer ◽  
Roger Schmidt ◽  
Madshusudan Iyengar ◽  
...  

The power trend for server systems continues to grow thereby making thermal management of data centers a very challenging task. Although various configurations exist, the raised floor plenum with Computer Room Air Conditioners (CRACs) providing cold air is a popular operating strategy. In prior work, numerous data center layouts employing raised floor plenum and the impact of design parameters such as plenum depth, ceiling height, cold isle location, tile openings and others on thermal performance of data center were presented. The air cooling of data center however, may not address the situation where more energy is expended in cooling infrastructure than the thermal load of data center. Revised power trend projections by ASHRAE TC 9.9 predict heat loads as high as 5000W per square feet of compute servers’ equipment footprint by year 2010. These trend charts also indicate that heat load per product footprint has doubled for storage servers during 2000–2004. For the same period, heat load per product footprint for compute servers has tripled. Amongst the systems that are currently available and being shipped, many racks exceed 20kW. Such high heat loads have raised concerns over air cooling limits of data centers similar to that of microprocessors. A hybrid cooling strategy that incorporates liquid cooling along with air cooling can be very efficient in such situations. The impact of such an operating strategy on thermal management of data center is discussed in this paper. A representative data center is modeled using commercially available CFD code. The change in rack temperature gradients, recirculation cells and CRAC demand due to use of hybrid cooling is presented in a detailed parametric study. It is shown that the hybrid cooling strategy improves the cooling of data center which may enable full population of rack and better management of system infrastructure.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat G. Sammakia ◽  
Russell Tipton ◽  
Mark Seymour

Cooling power constitutes a large portion of the total electrical power consumption in data centers. Approximately 25%∼40% of the electricity used within a production data center is consumed by the cooling system. Improving the cooling energy efficiency has attracted a great deal of research attention. Many strategies have been proposed for cutting the data center energy costs. One of the effective strategies for increasing the cooling efficiency is using dynamic thermal management. Another effective strategy is placing cooling devices (heat exchangers) closer to the source of heat. This is the basic design principle of many hybrid cooling systems and liquid cooling systems for data centers. Dynamic thermal management of data centers is a huge challenge, due to the fact that data centers are operated under complex dynamic conditions, even during normal operating conditions. In addition, hybrid cooling systems for data centers introduce additional localized cooling devices, such as in row cooling units and overhead coolers, which significantly increase the complexity of dynamic thermal management. Therefore, it is of paramount importance to characterize the dynamic responses of data centers under variations from different cooling units, such as cooling air flow rate variations. In this study, a detailed computational analysis of an in row cooler based hybrid cooled data center is conducted using a commercially available computational fluid dynamics (CFD) code. A representative CFD model for a raised floor data center with cold aisle-hot aisle arrangement fashion is developed. The hybrid cooling system is designed using perimeter CRAH units and localized in row cooling units. The CRAH unit supplies centralized cooling air to the under floor plenum, and the cooling air enters the cold aisle through perforated tiles. The in row cooling unit is located on the raised floor between the server racks. It supplies the cooling air directly to the cold aisle, and intakes hot air from the back of the racks (hot aisle). Therefore, two different cooling air sources are supplied to the cold aisle, but the ways they are delivered to the cold aisle are different. Several modeling cases are designed to study the transient effects of variations in the flow rates of the two cooling air sources. The server power and the cooling air flow variation combination scenarios are also modeled and studied. The detailed impacts of each modeling case on the rack inlet air temperature and cold aisle air flow distribution are studied. The results presented in this work provide an understanding of the effects of air flow variations on the thermal performance of data centers. The results and corresponding analysis is used for improving the running efficiency of this type of raised floor hybrid data centers using CRAH and IRC units.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5719
Author(s):  
JiHyun Hwang ◽  
Taewon Lee

The recent expansion of the internet network and rapid advancements in information and communication technology are expected to lead to a significant increase in power consumption and the number of data centers. However, these data centers consume a considerable amount of electric power all year round, regardless of working days or holidays; thus, energy saving at these facilities has become essential. A disproportionate level of power consumption is concentrated in computer rooms because air conditioners in these rooms are required to operate throughout the year to maintain a constant indoor environment for stable operation of computer equipment with high-heat release densities. Considerable energy-saving potential is expected in such computer rooms, which consume high levels of energy, if an outdoor air-cooling system and air conditioners are installed. These systems can reduce the indoor space temperature by introducing a relatively low outdoor air temperature. Therefore, we studied the energy-saving effect of introducing an outdoor air-cooling system in a computer room with a disorganized arrangement of servers and an inadequate air conditioning system in a research complex in Korea. The findings of this study confirmed that annual energy savings of up to approximately 40% can be achieved.


2013 ◽  
Vol 718-720 ◽  
pp. 1687-1690 ◽  
Author(s):  
Sheng Long Wang ◽  
Wen Hao Li ◽  
Yin Hai Ge

In this paper, the research object is composite-cycle air-cooling system. First,gave a brief introduction of the system structure and the working principle in power plant. Then the optimal vacuum calculation model was established with the analysis of performance indicators and the amount of equipment production, consumption power of system. Analyze the impact of the ambient temperature to system optimal vacuum in variable conditions. Lastly, combining the climatic conditions of example, which can be drawn is that when the annual best vacuum is 4.8kPa, the running annual earnings is the highest. This article provides guiding significance for correct understanding and engineering applications of composite-cycle air-cooling systems, also further confirm the feasibility of composite-cycle air-cooling system.


1979 ◽  
Vol 101 (4) ◽  
pp. 516-523 ◽  
Author(s):  
James C. Eastwood

The efficiency of turbocharged diesel engines can be increased by cooling the charge air. This paper presents a design approach for liquid-coupled indirect-transfer heat exchanger systems to perform the air-cooling function. The two advantages most commonly cited for this approach to charge-air cooling are (1) the heat exchangers involved are easily packaged so that their shapes can be controlled by judicious design, and (2) simple gas ducting allows for compact machinery arrangements and relatively low charge-air pressure drop. An analytical approach to the design of liquid-coupled indirect-transfer heat exchanger systems is presented. Performance curves are constructed on the basis of this analysis. Four important design conditions are evident from the observation of these performance curves including (1) the relative capacity rate combination of the three fluids (ambient air, coupling liquid, and engine charge-air) which yields the highest overall effectiveness, (2) an optimum coupling-liquid flow rate, (3) the relative effectiveness distribution for each of the two component heat exchangers (hot and cold components), and (4) a broad design range for the optimum area distribution between the hot and cold exchangers. These performance curves serve as a guide for the design of a liquid-coupled charge-air cooling system.


Author(s):  
Veerendra Mulay ◽  
Saket Karajgikar ◽  
Dereje Agonafer ◽  
Roger Schmidt ◽  
Madhusudan Iyengar

The power trend for Server systems continues to grow thereby making thermal management of Data centers a very challenging task. Although various configurations exist, the raised floor plenum with Computer Room Air Conditioners (CRACs) providing cold air is a popular operating strategy. The air cooling of data center however, may not address the situation where more energy is expended in cooling infrastructure than the thermal load of data center. Revised power trend projections by ASHRAE TC 9.9 predict heat load as high as 5000W per square feet of compute servers’ equipment footprint by year 2010. These trend charts also indicate that heat load per product footprint has doubled for storage servers during 2000–2004. For the same period, heat load per product footprint for compute servers has tripled. Amongst the systems that are currently available and being shipped, many racks exceed 20kW. Such high heat loads have raised concerns over limits of air cooling of data centers similar to air cooling of microprocessors. A hybrid cooling strategy that incorporates liquid cooling along with air cooling can be very efficient in these situations. A parametric study of such solution is presented in this paper. A representative data center with 40 racks is modeled using commercially available CFD code. The variation in rack inlet temperature due to tile openings, underfloor plenum depths is reported.


Sign in / Sign up

Export Citation Format

Share Document