Stator Diagnosis in Permanent Magnet Synchronous Motor (PMSM)

Author(s):  
Madi Zholbaryssov ◽  
Azeem Sarwar

Abstract GM has a vision of future with zero crashes, zero emissions, and zero congestion. Permanent Magnet Synchronous Motors will be integral part of an all-electric future, due to their excellent power to mass ratio and smaller size, which promises to deliver the zero emission world. Making sure that these motors do not fail abruptly without warning, will also reduce congestion caused on the roads by such incidents. Stator winding health monitoring presented in this article allows to detect a fault at its early stage, which greatly increases the chances of the customer being able to repair electric drive system before it completely fails. We present approach for detecting shorted turn faults in stator winding of permanent magnet synchronous motor. The approach is based on monitoring negative sequence admittance for certain operating conditions. Timely fault detection also allows to take preventive action to limit damage propagation across the electric drive, thus, reducing repair and warranty costs. The research presented in this article also furthers GM’s strategic initiative to develop Vehicle Health Management (VHM) technologies that positively impact customer ownership experiences and drive their long-term loyalty to GM brands.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1630
Author(s):  
Przemyslaw Pietrzak ◽  
Marcin Wolkiewicz

Stator winding faults are one of the most common faults of permanent magnet synchronous motors (PMSMs), and searching for methods to efficiently detect this type of fault and at an early stage of damage is still an ongoing, important topic. This paper deals with the selected methods for detecting stator winding faults (short-circuits) of a permanent magnet synchronous motor, which are based on the analysis of the stator phase current signal. These methods were experimentally verified and their effectiveness was carefully compared. The article presents the results of experimental studies obtained from the spectral analysis of the stator phase current, stator phase current envelope, and the discrete wavelet transform. The original fault indicators (FIs) based on the observation of the symptoms of stator winding fault were distinguished using the aforementioned methods, which clearly show which symptom is most sensitive to the incipient fault of the stator winding of PMSMs.


2013 ◽  
Vol 64 (5) ◽  
pp. 298-304 ◽  
Author(s):  
Baghdad Belabbes ◽  
Abdelkader Lousdad ◽  
Abdelkader Meroufel ◽  
Ahmed Larbaoui

Abstract The aim of the present paper is the study of the behaviour of passivity based control and difficulties due to synthesis for various operating conditions of a synchronous motor with a permanent magnets. The study takes into account the guarantee of satisfactory static and dynamic performance. It also allows the system to be insensitive to disturbances and uncertainties on the parameters. A number of estimation techniques have been developed to achieve speed and position sensorless permanent magnet synchronous motor (PMSM) drives. Most of them suffer from variation of motor parameters such as the stator resistance, stator inductance and torque constant. Also it is known that conventional linear estimators are not adaptive variations of the operating point in a nonlinear system.


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402094432
Author(s):  
Xiaowei Xu ◽  
Xue Qiao ◽  
Nan Zhang ◽  
Jingyi Feng ◽  
Xiaoqing Wang

Permanent magnet synchronous motors are the main power output components of electric vehicles. Once a failure occurs, it will affect the vehicle’s power, stability, and safety. While as a complex field-circuit coupling system composed of machine-electric-magnetic-thermal, the permanent magnet synchronous motor of electric vehicle has various operating conditions and complicated condition environment. There are various forms of failure, and the signs of failure are crossed or overlapped. Randomness, secondary, concurrency, and communication characteristics make it difficult to diagnose faults. Based on the research of a list of related references, this article reviews the methods of intelligent fault diagnosis for electric vehicle permanent magnet synchronous motors. The research status and development trend of fault diagnosis are analyzed. It provides theoretical basis for motor fault diagnosis and health management in multi-variable working conditions and multi-physics environment.


Machines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 35
Author(s):  
Manel Krichen ◽  
Elhoussin Elbouchikhi ◽  
Naourez Benhadj ◽  
Mohamed Chaieb ◽  
Mohamed Benbouzid ◽  
...  

Neodymium-boron (NdFeB) permanent magnets (PMs) have been widely studied in the past years since they became the material of choice in permanent magnet synchronous machines (PMSMs). Although NdFeB PMs have a better energy density than other types of magnets and are cost-effective, their magnetization is very sensitive to the PMSM operating conditions, in particular temperature, where the irreversible demagnetization degree increases over time. Therefore, it is important to characterize and diagnose demagnetization at an early stage. In this context, this paper proposes a two-step analysis study dealing with both uniform and partial demagnetization. A 2D finite element method-based (FEM) approach is used for demagnetization characterization, and then a PMSM motor current signature analysis (MCSA) approach, based on fast Fourier transform (FFT), is considered where fault cases harmonics are considered as faults indices to detect demagnetization. In some situations, the proposed two-step approach achieved results that clearly allow distinguishing and characterizing demagnetization. Indeed, a local demagnetization introduces specific sub-harmonics while a uniform demagnetization leads to the current amplitude increase for a given torque.


Sign in / Sign up

Export Citation Format

Share Document