Optimization of Pump Energy Consumption in Oil Pipelines

Author(s):  
Claudio Veloso Barreto ◽  
Luis Fernando Gonc¸alves Pires ◽  
Luis Fernando Alzuguir Azevedo

In the present work an optimization study was conducted with the objective of providing pipeline operators with a simple, spreadsheet-based computational tool to help decrease the electrical energy consumption associated with a particular transport operation. The methodology proposed encompasses the construction of a database of information on the pipeline regarding pumping power consumption, for all possible pumping arrangements and flow rate ranges considered viable for the pipeline. This database is fed to a spreadsheet programmed to calculate the minimum pumping cost for a particular operation. This calculation takes into account, the volume of product to be transported, start and finish times, fluid properties, and the possibility of the existence of a low and a high electricity tariff based on geographical location and time of the day. The methodology was applied to the ORBEL II pipeline in Brazil, and two case studies were conducted. Significant cost savings were obtained by the use of the methodology developed.

Author(s):  
Lei Xu ◽  
Lei Hou ◽  
Zhenyu Zhu ◽  
Yu Li ◽  
Ting Lei

Abstract Electrical energy consumption forecasting of crude oil pipelines plays a critical role in energy consumption target setting, batch scheduling, and unit commitment. For actual crude oil pipelines, because of its uncertainty, nonlinearity, intermittency, fluctuations and complexity, it is challenging to establish the electrical energy consumption forecasting model. And it is difficult to describe the non-linear characteristics of electrical energy consumption forecasting by traditional methods. Therefore, a novel hybrid electrical energy consumption forecasting system based on the combination of support vector machine (SVM) and improved particle swarm optimization (IPSO) is proposed, which includes four parts: data pre-processing part, optimization part, forecasting part, and evaluation part. In the pre-processing stage, in order to avoid large deviation caused by sampling stochasticity of small samples, the training set and the test set are divided by stratified sampling method. During the modeling process, the non-linear relationship in electrical energy consumption forecasting is efficiently represented by support vector machine, and the parameters of support vector machine regression are optimized by the improved particle swarm optimization algorithm. According to the established IPSO-SVM model, evaluation part is conducted to make a comprehensive evaluation for this framework. By comparing the evaluation indicators of IPSO-SVM with that of eight state-of-the-art forecasting methods, the effectiveness of IPSO-SVM method is evaluated. Based on the operation data of four crude oil pipelines in China, the results show that the proposed IPSO-SVM hybrid model has the best forecasting performance than other benchmark models, and its forecasting results are the closest to the actual data. It is concluded that the proposed approach can be an efficient technique for electrical energy consumption forecasting of crude oil pipelines.


Author(s):  
Zhiming Gao ◽  
Zhenhong Lin ◽  
Oscar Franzese

An evaluation was made of the application of battery electric vehicles (BEVs) and GenSet plug-in hybrid electric vehicles (PHEVs) to Class-7 local delivery trucks and GenSet PHEV for Class-8 utility bucket trucks over widely real-world driving data performed by conventional heavy-duty trucks. GenSet refers to a PHEV range extension mode in which the PHEV engine is used only to generate electricity and charge the battery if the PHEV battery is out of electrical energy. A simulation tool based on vehicle tractive energy methodology and component efficiency for addressing component and system performance was developed to evaluate the energy consumption and performance of the trucks. As part of this analysis, various battery sizes combined with different charging powers on the e-trucks for local delivery, and utility bucket applications were investigated. The results show that the e-truck applications not only reduce energy consumption but also achieve significant energy cost savings. For delivery e-trucks, periodic stops at delivery sites provide sufficient time for battery charging, and for this reason, a high-power charger is not necessary. For utility bucket PHEV trucks, energy consumption per mile of bucket truck operation is typically higher because of longer idling times and extra high idling load associated with heavy utility work. The availability of en route charging is typically lacking at the worksites of bucket trucks; thus, the battery size of these trucks is somewhat larger than that of the delivery trucks studied.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1202
Author(s):  
Yonmo Sung ◽  
Sangyoun Lee ◽  
Kyungmoon Han ◽  
Jaduck Koo ◽  
Seongjae Lee ◽  
...  

The energy cost of producing steel in an electric arc furnace (EAF) has a sizable influence on the prices of natural gas and electricity. Therefore, it is important to use these energies efficiently via a tailored oxy-fuel combustion burner and oxygen lance. In this study, an important modification of the side-wall injector system in the EAF at Hyundai Steel Incheon works was implemented to reduce electrical energy consumption and improve productivity. A protruding water-cooled copper jacket, including a newly designed burner, was developed to reduce the distance between the jet nozzle and the molten steel. In addition, the jet angles for the burner and lance were separately set for each scrap melting and refining mode. The modifications led to a reduction in electrical energy consumption of 5 kWh/t and an increase in productivity of approximately 3.1 t/h. Consequently, total energy cost savings of 0.3 USD/t and a corresponding annual cost savings of approximately 224,000 USD/year were achieved.


2005 ◽  
Vol 127 (3) ◽  
pp. 343-351 ◽  
Author(s):  
Gregor P. Henze

In contrast to building energy conversion equipment, less improvement has been achieved in thermal energy distribution, storage and control systems in terms of energy efficiency and peak load reduction potential. Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid and time-of-use electricity rates are designed to encourage shifting of electrical loads to off-peak periods at night and on weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building’s massive structure (passive storage) or by using active thermal energy storage systems such as ice storage. Recent theoretical and experimental work showed that the simultaneous utilization of active and passive building thermal storage inventory can save significant amounts of utility costs to the building operator, yet increased electrical energy consumption may result. The article investigates the relationship between cost savings and energy consumption associated with conventional control, minimal cost and minimal energy control, while accounting for variations in fan power consumption, chiller capacity, chiller coefficient-of-performance, and part-load performance. The model-based predictive building controller is employed to either minimize electricity cost including a target demand charge or electrical energy consumption. This work shows that buildings can be operated in a demand-responsive fashion to substantially reduce utility costs with marginal increases in overall energy consumption. In the case of energy optimal control, the reference control was replicated, i.e., if only energy consumption is of concern, neither active nor passive building thermal storage should be utilized. On the other hand, cost optimal control suggests strongly utilizing both thermal storage inventories.


Author(s):  
Agus Marjianto ◽  
Hafthirman Hafthirman ◽  
Prihadi Setyo Darmanto

The use of magnetic bearing chillers in hotel air conditioning systems is an opportunity for energy or cost savings. This study will compare the electrical energy consumption and cost analysis of the centralized air conditioning system using magnetic bearing chiller that uses variable flow to another air conditioning system such as the centralized air conditioning using constant flow chiller and the VRF split air conditioning system at Hotel A in Jakarta. The calculation of energy consumption for each air conditioning system is carried out for a year. Meanwhile, the cost analysis will be carried out using the life cycle cost method for 20 years. The air conditioning system which has the least energy consumption and has the lowest life cycle cost is the best air conditioning system for this hotel building. The maximum cooling load that occurs in Hotel A is 3,281 kW. From the results of energy calculations and cost analysis, a centralized air conditioning system with magnetic bearing chiller with variable flow is the best choice to Hotel A or similar building to Hotel A, with IKE (Intensitas Konsumsi Energi) value of 84 kWh/(m2.year), and a total cost of 78,873,678,478.00 IDR for a period of 20 years.


Author(s):  
Lei Xu ◽  
Lei Hou ◽  
Yu Li ◽  
Zhenyu Zhu ◽  
Jiaquan Liu ◽  
...  

Abstract Energy consumption prediction plays an important role in pipeline operation regulation and energy management. Accurate energy consumption prediction is helpful to make important decisions, including unit commitment, batch scheduling, load dispatching, energy consumption target setting, etc. The energy consumption of crude oil pipeline is mainly the electrical energy of pump unit. The average annual electrical energy consumption of China’s crude oil pipelines accounts for more than half of the annual operating cost of pipelines. Therefore, the prediction of electrical energy consumption of crude oil pipelines is critical. The energy consumption prediction of crude oil pipelines is very complicated. Firstly, it depends on the variables related to operation parameter, crude oil physical property parameter, environmental parameter and equipment parameter. Secondly, its nonlinearity is strong. Thirdly, the available samples are too little. Through the study on the monthly operation data collected by the Supervisory Control And Data Acquisition (SCADA) system and energy consumption analysis, the turnover and the electrical energy consumption is selected as input variable and output variable, respectively. The support vector machines (SVM) is introduced to predict the monthly electric energy consumption of crude oil pipelines driving oil pumps. However, the generalization capability of SVM is highly dependent on appropriate parameter setting, such as penalty coefficient and kernel parameter. The selection of the optimal parameters is critical to achieving good performance in the learning process. Therefore, in order to improve the generalization ability, GridSearchCV was adopted to optimize the hyperparameters of SVM. Taking a crude oil pipeline from Qinhuangdao City, Hebei Province to Fangshan District, Beijing as an example, the actual operation data for four consecutive years (48 months) are used for this study. The data are divided into training set and test set by stratified sampling method, which consist of 28 samples and 20 samples respectively. The mean absolute percentage error (MAPE), root mean square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2) on the test set are 3.42, 21.64, 14.31 and 0.94 respectively. Compared with other five state-of-the-art prediction methods in predictive accuracy, the result shows that GSCV-SVM has the best performance in the case of small samples, and the prediction results are in good agreement with the actual data.


2021 ◽  
pp. 1-15
Author(s):  
Fernanda P. Mota ◽  
Cristiano R. Steffens ◽  
Diana F. Adamatti ◽  
Silvia S. Da C Botelho ◽  
Vagner Rosa

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ammar Ali Abd ◽  
Samah Zaki Naji ◽  
Ching Thian Tye ◽  
Mohd Roslee Othman

Abstract Liquefied petroleum gas (LPG) plays a major role in worldwide energy consumption as a clean source of energy with low greenhouse gases emission. LPG transportation is exhibited through networks of pipelines, maritime, and tracks. LPG transmission using pipeline is environmentally friendly owing to the low greenhouse gases emission and low energy requirements. This work is a comprehensive evaluation of transportation petroleum gas in liquid state and compressible liquid state concerning LPG density, temperature and pressure, flow velocity, and pump energy consumption under the impact of different ambient temperatures. Inevitably, the pipeline surface exchanges heat between LPG and surrounding soil owing to the temperature difference and change in elevation. To prevent phase change, it is important to pay attention for several parameters such as ambient temperature, thermal conductivity of pipeline materials, soil type, and change in elevation for safe, reliable, and economic transportation. Transporting LPG at high pressure requests smaller pipeline size and consumes less energy for pumps due to its higher density. Also, LPG transportation under moderate or low pressure is more likely exposed to phase change, thus more thermal insulation and pressure boosting stations required to maintain the phase envelope. The models developed in this work aim to advance the existing knowledge and serve as a guide for efficient design by underling the importance of the mentioned parameters.


Sign in / Sign up

Export Citation Format

Share Document