Utilizing In-Line Inspection Data and Structural Reliability Analysis to Set a Defendable Corrosion Re-Assessment Interval

Author(s):  
Ryan Sporns ◽  
Steven Bott ◽  
David Playdon

A quantitative pipeline integrity analysis based on structural-reliability methods has been used to establish corrosion re-assessment intervals from in-line inspection data. This process, as implemented in a simulation-based software package, incorporates in line inspection (ILI) data, physical and operation characteristics of the pipeline, corrosion growth rate projections, and the uncertainties inherent in this information, to estimate the probability of failure (POF) as a function of time. Using this approach, the POF value is calculated on a joint-by-joint basis and the calculated values are then compared with an acceptable POF level to verify the integrity of each joint in any given year. Based on this information a re-assessment interval is established and selected joints are targeted for excavation and repair to ensure that the acceptable POF level is not exceeded.

Author(s):  
Mir Emad Mousavi ◽  
Sanjeev Upadhye ◽  
Kevin Haverty

The design of riser systems can be improved if structural reliability methods are used to assess their safety and integrity and confirm that such design meets a target annual probability of failure. TTRs are typically multi–bore assemblies involving several sub-assemblies. The failure of any of the components of a TTR under extreme or service environmental conditions can lead to an immediate failure of the entire assembly and impose a direct risk of damaging the wellheads, conductors, casing and tubing hangers, or other subsea equipment, because they are installed directly on top of the wellhead. However, the actual strength safety of the TTR cannot be examined unless after it is installed and examined under extreme events. Because of the numerous uncertainties associated with the design of TTRs, a probabilistic approach based on structural reliability methods can account for many of those uncertainties and serve as a basis for their reliable and cost-effective design. In turn, a comprehensive reliability assessment of a TTR requires extensive analysis that is considerably more complex and time consuming compared to a conventional deterministic-based analysis. This paper presents a probabilistic-based simplified methodology for the strength reliability assessment of TTR systems. In this method, marginal values on some uncertain model inputs are considered similar to the conventional analysis methods but, some key random variables related to environmental demands and component capacities are considered with their associated probability distributions. As a result, this method can be used to estimate the minimum level of safety of the TTR under extreme events. Additionally, results of the proposed method are discussed for integrity analysis and integrity-based optimal design of the TTR system, which compare the safety of the TTR components and estimate the component Optimality Factors for improving the design integrity and meeting a target minimum annual probability of failure.


Author(s):  
Mark Stephens ◽  
Maher Nessim

Quantitative analysis approaches based on structural reliability methods are gaining wider acceptance as a basis for assessing pipeline integrity and these methods are ideally suited to managing metal loss corrosion damage as identified through in-line inspection. The essence of this approach is to combine deterministic failure prediction models with in-line inspection data, the physical and operational characteristics of the pipeline, corrosion growth rate projections, and the uncertainties inherent in this information, to estimate the probability of corrosion failure as a function of time. The probability estimates so obtained provide the basis for informed decisions on which defects to repair, when to repair them and when to re-inspect. While much has been written in recent years on these types of analyses, the authors are not aware of any published methods that address all of the factors that can significantly influence the probability estimates obtained from such an analysis. Of particular importance in this context are the uncertainties associated with the reported defect data, the uncertainties associated with the models used to predict failure from this defect data, and the approach used to discriminate between failure by leak and failure by burst. The correct discrimination of failure mode is important because tolerable failure probabilities should depend on the mode of failure, with lower limits being required for burst failures because the consequences of failure are typically orders of magnitude more severe than for leaks. This paper provides an overview of a probabilistic approach to corrosion defect management that addresses the key sources of uncertainty and discriminates between failure modes. This approach can be used to assess corrosion integrity based on in-line inspection data, schedule defect repairs and provide guidance in establishing re-inspection intervals.


Author(s):  
Neil Bates ◽  
David Lee ◽  
Clifford Maier

This paper describes case studies involving crack detection in-line inspections and fitness for service assessments that were performed based on the inspection data. The assessments were used to evaluate the immediate integrity of the pipeline based on the reported features and the long-term integrity of the pipeline based on excavation data and probabilistic SCC and fatigue crack growth simulations. Two different case studies are analyzed, which illustrate how the data from an ultrasonic crack tool inspection was used to assess threats such as low frequency electrical resistance weld seam defects and stress corrosion cracking. Specific issues, such as probability of detection/identification and the length/depth accuracy of the tool, were evaluated to determine the suitability of the tool to accurately classify and size different types of defects. The long term assessment is based on the Monte Carlo method [1], where the material properties, pipeline details, crack growth parameters, and feature dimensions are randomly selected from certain specified probability distributions to determine the probability of failure versus time for the pipeline segment. The distributions of unreported crack-related features from the excavation program are used to distribute unreported features along the pipeline. Simulated crack growth by fatigue, SCC, or a combination of the two is performed until failure by either leak or rupture is predicted. The probability of failure calculation is performed through a number of crack growth simulations for each of the reported and unreported features and tallying their respective remaining lives. The results of the probabilistic analysis were used to determine the most effective and economical means of remediation by identifying areas or crack mechanisms that contribute most to the probability of failure.


2004 ◽  
Vol 126 (4) ◽  
pp. 331-336 ◽  
Author(s):  
Ernesto Heredia-Zavoni ◽  
Dante Campos ◽  
Gallegher Ramı´rez

Structural reliability analyses of fixed marine platforms subjected to storm wave loading are performed to assess deck elevations. Platforms are modeled as a series system consisting of the deck and jacket bays. The structural reliability analyses are carried out assuming dominant failure modes for the system components. Upper and lower bounds of the probability of failure are computed. The variation of the reliability index per bay component as a function of wave height, with a focus on those wave heights that generate forces on the deck, is analyzed. A comparison is given for the deck probability of failure and the lower bound probability of failure of the jacket in order to assess how the deck or the jacket controls the probability of failure of the system. Results are also given for reliability analyses considering different deck elevations. Finally, an analysis of the total probabilities of failure, unconditioned on wave heights, is given.


Author(s):  
Gae¨l Pognonec ◽  
Vincent Gaschignard ◽  
Philippe Notarianni

Oil and Gas operators have to deal with the ageing process of their transmission pipeline grid. Some of these pipelines can be inspected using In Line Inspection (ILI) tools. In order to maintain an acceptable integrity level, re-inspection operations have to be performed. This process needs to be optimized in terms of resources and cost. Gaz de France R&D Division has developed a methodology which prioritizes rehabilitation operations on a pipeline after in-line inspections, and determines the optimal interval for re-inspection. A reliable help decision software tool which applies the methodology has also been developed. Dealing with defects assimilated to external electrochemical corrosion, the developed methodology is based on: • pigs information in order to assess a probable corrosion growth rate; • probabilistic distribution of input parameters (geometrical characteristics of defects, characteristics of the pipe and corrosion growth rate); • probabilistic methods of calculation : the probability of failure is calculated with the Monte-Carlo method. The convergence of the calculation is accelerated with the Cross Entropy method. The calculation results take the form of three probabilities of failure: • a punctual probability of failure for each defect; • an annual probability of failure for each defect; • an annual probability of failure per kilometer of pipe. To interpret the results, the annual probability of failure per kilometer of pipe is then compared with threshold values.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Rami Mansour ◽  
Mårten Olsson

Reliability assessment is an important procedure in engineering design in which the probability of failure or equivalently the probability of survival is computed based on appropriate design criteria and model behavior. In this paper, a new approximate and efficient reliability assessment method is proposed: the conditional probability method (CPM). Focus is set on computational efficiency and the proposed method is applied to classical load-strength structural reliability problems. The core of the approach is in the computation of the probability of failure starting from the conditional probability of failure given the load. The number of function evaluations to compute the probability of failure is a priori known to be 3n + 2 in CPM, where n is the number of stochastic design variables excluding the strength. The necessary number of function evaluations for the reliability assessment, which may correspond to expensive computations, is therefore substantially lower in CPM than in the existing structural reliability methods such as the widely used first-order reliability method (FORM).


2021 ◽  
Vol 147 (12) ◽  
pp. 04021108
Author(s):  
Alverlando Silva Ricardo ◽  
Wellison José de Santana Gomes

Author(s):  
Erik Vanem

Abstract Environmental contours are applied in probabilistic structural reliability analysis to identify extreme environmental conditions that may give rise to extreme loads and responses. Typically, they are constructed to correspond to a certain return period and a probability of exceedance with regards to the environmental conditions that can again be related to the probability of failure of a structure. Thus, they describe events with a certain probability of being exceeded one or more times during a certain time period, which can be found from a certain percentile of the underlying distribution. In this paper, various ways of adjusting such environmental contours to account for the expected number of exceedances within a certain time period are discussed. Depending on how such criteria are defined, one may get more lenient or more stringent criteria compared to the classical return period.


Author(s):  
Andrew Cosham ◽  
Jane Haswell ◽  
Neil Jackson

Quantified risk assessments (QRAs) are widely used in the UK to assess the significance of the risk posed by major accident hazard pipelines on the population and infrastructure in the vicinity of the pipeline. A QRA requires the calculation of the frequency of failures and the consequences of failures. One of the main causes of failures in onshore pipelines is mechanical damage due to external interference, such as a dent, a gouge, or a dent and gouge. In the published literature, two methods have been used to calculate the probability of failure due to external interference: • historical failure data and • limit state functions combined with historical data (i.e. structural reliability-based methods). Structural reliability-based methods are mathematically complicated, compared to using historical failure data, but have several advantages, e.g. extrapolation beyond the limited historical data, and the identification of trends that may not be apparent in the historical data. In view of this complexity, proposed supplements to the UK pipeline design codes IGE/TD/1 (natural gas) and PD 8010 (all substances) — on the application of QRAs to proposed developments in the vicinity of major accident hazard pipelines — include simple ‘reduction factors’ for use in ‘screening’ risk assessments. These ‘reduction factors’ are based on a comprehensive parametric study using a structural reliability-based model to calculate the probability of failure due to mechanical damage, defined as: gouges, and dents and gouges. The two ‘reduction factors’ are expressed in terms of the design factor and wall thickness of the pipeline. It is shown that, through appropriate normalisation, the effects of diameter, grade and toughness are secondary. Reasonably accurate, but conservative, estimates of the probability of failure can be obtained using these ‘reduction factors’. The proposed methodology is considerably simpler than a structural reliability-based analysis. The development and verification of these ‘reduction factors’ is described in this paper.


Sign in / Sign up

Export Citation Format

Share Document