A Practical Application to Calculating Corrosion Growth Rates by Comparing Successive ILI Runs From Different ILI Vendors

Author(s):  
Kevin Spencer ◽  
Shahani Kariyawasam ◽  
Cathy Tetreault ◽  
Jon Wharf

Corrosion growth rates are an essential input into an Integrity Management Program but they can often be the largest source of uncertainty and error. A relatively simple method to estimate a corrosion growth rate is to compare the size of a corrosion anomaly over time and the most practical way to do this for a whole pipeline system is via the use of In-Line Inspection (ILI). However, the reported depth of the anomaly following an ILI run contains measurement uncertainties, i.e., sizing tolerances that must be accounted for in defining the uncertainty, or error associated with the measured corrosion growth rate. When the same inspection vendor performs the inspections then proven methods exist that enable this growth error to be significantly reduced but these methods include the use of raw inspection data and, specialist software and analysis. Guidelines presently exist to estimate corrosion growth rates using inspection data from different ILI vendors. Although well documented, they are often only applicable to “simple” cases, pipelines containing isolated corrosion features with low feature density counts. As the feature density or the corrosion complexity increases then different reporting specifications, interaction rules, analysis procedures, sizing models, etc can become difficult to account for, ultimately leading to incorrect estimations or larger uncertainties regarding the growth error. This paper will address these issues through the experiences of a North American pipeline operator. Accurately quantifying the reliability of pipeline assets over time requires accurate corrosion growth rates and the case study will demonstrate how the growth error was significantly reduced over existing methodologies. Historical excavation and recoat information was utilized to identify static defects and quantify systemic bias between inspections. To reduce differences in reporting and the analyst interpretation of the recorded magnetic signals, novel analysis techniques were employed to normalize the data sets against each other. The resulting uncertainty of the corrosion growth rates was then further reduced by deriving, and applying a regression model to reduce the effect of the different sizing models and the identified systemic bias. The reduced uncertainty ultimately led to a better understanding of the corrosion activity on the pipeline and facilitated a better integrity management decision process.

Author(s):  
Miaad Safari ◽  
David Shaw

Abstract As integrity programs mature over the life of a pipeline, an increasing number of data points are collected from second, third, or further condition monitoring cycles. Types of data include Inline Inspection (ILI) or External Corrosion Direct Assessment (ECDA) inspection data, validation or remediation dig information, and records of various repairs that have been completed on the pipeline system. The diversity and massive quantity of this gathered data proposes a challenge to pipeline operators in managing and maintaining these data sets and records. The management of integrity data is a key element to a pipeline system Integrity Management Program (IMP) as per the CSA Z662[1]. One of the most critical integrity datasets is the repair information. Incorrect repair assignments on a pipeline can lead to duplicate unnecessary excavations in the best scenario and a pipeline failure in the worst scenario. Operators rely on various approaches to manage and assign repair data to ILIs such as historical records reviews, ILI-based repair assignments, or chainage-based repair assignments. However, these methods have significant gaps in efficiency and/or accuracy. Failure to adequately manage excavation and repair data can lead to increased costs due to repeated excavation of an anomaly, an increase in resources required to match historical information with new data, uncertainty in the effectiveness of previous repairs, and the possibility of incorrect assignment of repairs to unrepaired features. This paper describes the approach adopted by Enbridge Gas to track and maintain repairs, as a part of the Pipeline Risk and Integrity Management (PRIM) platform. This approach was designed to create a robust excavation and repair management framework, providing a robust system of data gathering and automation, while ensuring sufficient oversight by Integrity Engineers. Using this system, repairs are assigned to each feature in an excavation, not only to a certain chainage along the pipeline. Subsequently, when a new ILI results report is received, a process of “Repair Matching” is completed to assign preexisting repairs and assessments to the newly reported features at a feature level. This process is partially automated, whereby pre-determined box-to-box features matched between ILIs can auto-populate repairs for many of the repaired features. The proposed excavation management system would provide operators a superior approach to managing their repair history and projecting historical repairs and assessments onto new ILI reports, prior to assessing the ILI and issuing further digs on the pipeline. This optimized method has many advantages over the conventional repair management methods used in the industry. This method is best suited for operators that are embarking on their second or third condition monitoring cycle, with a moderate number of historical repairs.


Author(s):  
Maher Nessim ◽  
Jane Dawson ◽  
Rafael Mora ◽  
Sherif Hassanein

The ability to accurately determine the rate of corrosion growth along a pipeline is an essential input into a number of key integrity management decisions. For example, corrosion rates are needed to predict pipeline reliability (probability of failure and/or probability of exceedance) as a function of time, to identify the need for and timing of field investigations and/or repairs and to determine optimum re-inspection intervals to name just a few applications. As more and more pipelines are now being inspected using intelligent in-line inspection (ILI) tools for a second or even third or fourth time, pipeline operators require reliable guidelines for comparing repeat ILI data sets to obtain valid corrosion growth rates. Because of the measurement uncertainties associated with corrosion size estimated from a single ILI run, the corrosion growth rate calculated from consecutive ILI runs has a degree of uncertainty that needs to be considered in determining valid and accurate corrosion growth rates. The ratio between the measured corrosion growth and the measurement error is an important parameter in determining a meaningful distribution of the corrosion growth rate either when performing defect to defect comparisons or when comparing the defect populations in pipeline segments. When this ratio is small the associated uncertainty can be too large to make meaningful probabilistic inferences. As the ratio increases, the effect of measurement uncertainty becomes more manageable, allowing growth rate distributions to be calculated with reasonable confidence. This paper describes an approach to define the probability distribution of corrosion growth rates as a function of a simple parameter that characterizes the ratio between the ILI-observed corrosion growth and the ILI measurement error. This approach has been developed as part of an ongoing PRCI-sponsored research project to produce procedures for determining and validating corrosion growth rates from repeat ILI runs. The paper also provides examples using sample data from repeat ILI runs showing the application of these procedures, the treatment of measurement uncertainty, the resulting corrosion growth rate information that can be obtained and the associated level of confidence in the results.


2010 ◽  
Vol 26 (02) ◽  
pp. 106-110
Author(s):  
Ge Wang ◽  
Michael Lee ◽  
Chris Serratella ◽  
Stanley Botten ◽  
Sam Ternowchek ◽  
...  

Real-time monitoring and detection of structural degradation helps in capturing the structural conditions of ships. The latest nondestructive testing (NDT) and sensor technologies will potentially be integrated into future generations of the structural integrity management program. This paper reports on a joint development project between Alaska Tanker Company, American Bureau of Shipping (ABS), and MISTRAS. The pilot project examined the viability of acoustic emission technology as a screening tool for surveys and inspection planning. Specifically, testing took place on a 32-year-old double-hull Trans Alaska Pipeline System (TAPS) trade tanker. The test demonstrated the possibility of adapting this technology in the identification of critical spots on a tanker in order to target inspections. This targeting will focus surveys and inspections on suspected areas, thus increasing efficiency of detecting structural degradation. The test has the potential to introduce new inspection procedures as the project undertakes the first commercial testing of the latest acoustic emission technology during a tanker's voyage.


1987 ◽  
Vol 127 ◽  
pp. 515-516
Author(s):  
P.L. Palmer ◽  
J. Papaloizou

We consider the linear stability of spherical stellar systems by solving the Vlasov and Poisson equations which yield a matrix eigenvalue problem to determine the growth rate. We consider this for purely growing modes in the limit of vanishing growth rate. We show that a large class of anisotropic models are unstable and derive growth rates for the particular example of generalized polytropic models. We present a simple method for testing the stability of general anisotropic models. Our anlysis shows that instability occurs even when the degree of anisotropy is very slight.


Author(s):  
Rafael G. Mora ◽  
Curtis Parker ◽  
Patrick H. Vieth ◽  
Burke Delanty

With the availability of in-line inspection data, pipeline operators have additional information to develop the technical and economic justification for integrity verification programs (i.e. Fitness-for-Purpose) across an entire pipeline system. The Probability of Exceedance (POE) methodology described herein provides a defensible decision making process for addressing immediate corrosion threats identified through metal loss in-line inspection (ILI) and the use of sub-critical in-line inspection data to develop a long term integrity management program. In addition, this paper describes the process used to develop a Corrosion In-line Inspection POE-based Assessment for one of the systems operated by TransGas Limited (Saskatchewan, Canada). In 2001, TransGas Limited and CC Technologies undertook an integrity verification program of the Loomis to Herbert gas pipeline system to develop an appropriate scope and schedule maintenance activities along this pipeline system. This methodology customizes Probability of Exceedance (POE) results with a deterministic corrosion growth model to determine pipeline specific excavation/repair and re-inspection interval alternatives. Consequently, feature repairs can be scheduled based on severity, operational and financial conditions while maintaining safety as first priority. The merging of deterministic and probabilistic models identified the Loomis to Herbert pipeline system’s worst predicted metal loss depth and the lowest safety factor per each repair/reinspection interval alternative, which when combined with the cost/benefit analysis provided a simplified and safe decision-making process.


Author(s):  
Garry L. Sommer ◽  
Brad S. Smith

Enbridge Pipelines Inc. operates one of the longest and most complex pipeline systems in the world. A key aspect of the Enbridge Integrity Management Program (IMP) is the trending, analysis, and management of data collected from over 50 years of pipeline operations. This paper/presentation describes Enbridge’s challenges, learnings, processes, and innovations for meeting today’s increased data management/integration demands. While much has been written around the premise of data management/integration, and many software solutions are available in the commercial market, the greatest data management challenge for mature pipeline operators arises from the variability of data (variety of technologies, data capture methods, and data accuracy levels) collected over the operating history of the system. Ability to bring this variable data set together is substantially the most difficult aspect of a coordinated data management effort and is critical to the success of any such project. Failure to do this will result in lack of user confidence and inability to gain “buy-in” to new data management processes. In 2001 Enbridge began a series of initiatives to enhance data management and analysis. Central to this was the commitment to accurate geospatial alignment of integrity data. This paper/presentation describes Enbridge’s experience with development of custom software (Integrated Spatial Analysis System – ISAS) including critical learnings around a.) Data alignment efforts and b.) Significant efforts involved in development of an accurate pipe centreline. The paper/presentation will also describe co-incident data management programs that link to ISAS. This includes enhanced database functionality for excavation data and development of software to enable electronic transfer of data to this database. These tools were built to enable rapid transfer of field data and “real time” tool validation through automated unity plots of tool defect data vs. that measured in the field.


Author(s):  
Robert V. Hadden ◽  
Kevin J. De Leenheer

As part of its Integrity Management Program, Trans Mountain Pipe Line hydrostatically tests sections of its pipeline system with water transported to test sites through the pipeline. After completion of the testing, the water continues through the pipeline to a water treatment facility where it is treated and discharged to the municipal sewer system. Hydrostatic testing of an operating pipeline, although simple in concept, is a major undertaking. This paper will outline the technical aspects of Trans Mountain’s hydrostatic testing program including: test water transportation, environmental constraints, coordination of test activities and water treatment.


Author(s):  
Neil Bates ◽  
Mark Brimacombe ◽  
Steven Polasik

A pipeline operator set out to assess the risk of circumferential stress corrosion cracking and to develop a proactive management program, which included an in-line inspection and repair program. The first step was to screen the total pipeline inventory based on pipe properties and environmental factors to develop a susceptibility assessment. When a pipeline was found to be susceptible, an inspection plan was developed which often included ultrasonic circumferential crack detection in-line inspection and geotechnical analysis of slopes. Next, a methodology was developed to prioritize the anomalies for investigation based on the likelihood of failure using the provided in-line inspection sizing data, crack severity analysis, and correlation to potential causes of axial or bending stress, combined with a consequence assessment. Excavation programs were then developed to target the anomalies that posed the greatest threat to the pipeline system or environment. This paper summarizes the experiences to date from the operator’s circumferential stress corrosion cracking program and describes how the pipeline properties, geotechnical program, and/or in-line inspection programs were combined to determine the susceptibility of each pipeline and develop excavation programs. In-line inspection reported crack types and sizes compared to field inspection data will be summarized, as well as how the population and severity of circumferential stress corrosion cracking found compares to the susceptible slopes found in the geotechnical program completed. Finally, how the circumferential SCC time-average growth rate distributions were calculated and were used to set future geohazard inspections, in-line inspections, or repair dates will be discussed.


2020 ◽  
Vol 36 (10) ◽  
pp. 2471-2480
Author(s):  
Isabel Gugel ◽  
Julian Zipfel ◽  
Philip Hartjen ◽  
Lan Kluwe ◽  
Marcos Tatagiba ◽  
...  

Abstract We reviewed our experience in managing of NF2-associated vestibular schwannoma (VS) in children and young adults regarding the effect of surgery and postoperative bevacizumab treatment. A total of 579 volumetric and hearing data sets were analyzed. The effect of surgery on tumor volume and growth rate was investigated in 46 tumors and on hearing function in 39 tumors. Long-term hearing follow-up behavior was compared with 20 non-operated ears in additional 15 patients. Sixteen operated VS were treated with bevacizumab. Mutation analysis of the NF2 gene was performed in 25 patients. Surgery significantly slowed down VS growth rate. Factors associated with a higher growth rate were increasing patient age, tumor volume, and constitutional truncating mutations. Immediately after surgery, functional hearing was maintained in 82% of ears. Deterioration of hearing was associated with initial hearing quality, larger tumor volumes, and larger resection amounts. Average hearing scores were initially better in the group of non-operated VS. Over time, hearing scores in both groups worsened with a similar dynamic. During bevacizumab treatment of residual tumors, four different patterns of growth were observed. Decompression of the internal auditory canal with various degrees of tumor resection decreases the postoperative tumor growth rates. Carefully tailored BAEP-guided surgery does not cause additional hearing deterioration. Secondary bevacizumab treatment showed heterogenous effects both regarding tumor size and hearing preservation. It seems that postoperative tumor residuals, that grow slower, behave differently to bevacizumab than reported for not-operated faster growing VS.


Author(s):  
Hugo García ◽  
Carlos Nieves ◽  
Juan Diego Colonia

Oil pipelines systems for hydrocarbons transportation are linear projects that can reach great lengths. For this reason, theirs paths may cross different geological formations, soil types, navigable or torrential waters; and they may face geotechnical and hydrological instability problems such as creeping slopes, geological faults, landslides, scour and differential settling which causes different relative movements between the soil and the pipeline. The OCENSA (Oleoducto Central S.A) 30″ and 36″ diameter system was built in 1997 to transport crude oil from the eastern foothills of the Andes to the Caribbean Coast along some 830 km of the Eastern Andes mountains range and the spurs of the central Andes mountains range of Colombia: it was a major challenge to secure the integrity of the pipeline in the face of natural events.


Sign in / Sign up

Export Citation Format

Share Document