The Development of a Facilities Integrity Management Program Recommended Practice for Canadian Energy Pipelines

Author(s):  
Reena Sahney ◽  
Mike Reed ◽  
Darren Skibinsky

The Canadian Energy Pipeline Association (CEPA) is a voluntary, non-profit industry association representing major Canadian transmission pipeline companies. With the advent of changes in both CSA Z6621 as well as the National Energy Board Onshore Pipeline Regulations (OPR)2, the membership determined a Recommended Practice regarding a Management Systems Approach for Facilities Integrity was needed. As such, the Pipeline Integrity Working Group (PIWG) within CEPA formed a task group to support the initiative. The outlined approach was intended to have two main philosophical underpinnings: it must comprehensively support safe pipeline system operations and it must provide a practical mechanism for implementing a management systems approach for Facilities Iintegrity. The main challenge in developing a framework for a Facilities Integrity Management System lies in the broad range of equipment and system types that the management system must encompass. That is, equipment, in the context of Facilities Integrity Management, must encompass not only station equipment (such as rotating equipment, valves, meters etc.,) but also categories such as high pressure station piping and fuel lines. Further, there was the recognition that Operators already have an array of tools, processes and techniques in place to manage their various equipment and systems. In light of these observations, the Recommended Practice describes a framework that uses major equipment types as a key differentiator. This is an approach that can be easily aligned with existing corporate computerized maintenance management systems (CMMS) such as SAP™ or Maximo™. Once the equipment categorization has been established, the Recommended Practice then provides guidance regarding the specific requirements that should be addressed for each equipment category based on the framework in CSA Z662-11 Annex N. Specific suggestions are provided in the areas of: alignment with corporate goals and objectives, scope, definitions, performance metrics, risk assessments, competency of personnel, change management as well as documentation. The approach also maximizes the opportunity to leverage existing systems and processes to the extent possible. Overall the Recommended Practice should provide operators with a practical way to achieve a greater degree of rigor and alignment of facilities integrity management while ensuring detailed study and analysis is focused in the most appropriate areas.

Author(s):  
Coral Lukaniuk ◽  
Reena Sahney ◽  
Mark Jean

The Canadian Energy Pipeline Association (CEPA) is a voluntary, non-profit industry association representing major Canadian transmission pipeline companies. CEPA Integrity First® is an industry program developed by the CEPA member companies as a way to work to collectively to strengthen the pipeline industry’s performance, engagement and communications. Integrity First focuses on three main areas: safety, environment and socio-economics. Through Integrity First, members assess their internal systems, processes and practices using “guidance documents” developed through industry collaboration. These documents contain detailed, but not prescriptive “maturity tables” companies use to assess themselves against. The assessments result in the identification of areas of improvement, new standards at the member company level and for industry as a whole. After the first two self-assessments were completed in 2014, there was recognition that the foundation of the guidance documents needed improvement to ensure sustainability and value to all stakeholders. The new structure of the maturity tables is intended to have two philosophical underpinnings: scalability and relevance to the broad size and range of CEPA member company’s operations and practical maturity assessment approach for a company’s management systems. The main challenge in developing the maturity tables to form a sustainable structure lies in the broad range of jurisdictional and pipeline system requirements that are represented by CEPA’s membership. More specifically, the maturity tables needed to be flexible enough to apply to CEPA member companies with international operations crossing multiple jurisdictional boundaries with multiple pipeline networks as well as smaller scale operations encompassing pipelines operating within a single provincial jurisdiction. Further, there was recognition that multiple regulatory requirements and standards/practices existed, especially in the area of management systems, including (but not limited to) the National Energy Board Onshore Pipeline Regulations, Canadian Standards Association Z662, American Petroleum Institute 1173 and International Standards Organization 9000, 14000 and 55000 series. In light of these constraints, a key aspect of the approach was to map (cross-reference) requirements from key regulations and standards. Once alignment between the different standards was assessed, requirements were reconciled and simplified where possible. A final and thorough review of all requirements was completed to ensure that breadth, depth and wording of the maturity tables and associated criteria was consistent and comprehensive prior to engaging member companies to collect feedback. The intent with Integrity First is not to create another management system but to follow management system principles. Integrity First enables member companies to consistently assess their own systems and, through analysis and comparison, facilitates improvement across the industry. The paper will discuss the approach in more detail along with key challenges, areas of learning and outcomes.


Author(s):  
M. Robb Isaac ◽  
Saleh Al-Sulaiman ◽  
Monty R. Martin ◽  
Sandeep Sharma

In early 2005, Kuwait Oil Company (KOC) initiated a Total Pipeline Integrity Management System (TPIMS) implementation in order to carry out a major integrity assessment of its operating facilities, equipment, buried plant piping and pipeline network and to establish a continuing integrity management program. KOC Transit System is a complex infrastructure consisting of over three hundred pipelines, thousands of wellhead flow lines, and consumer and offshore lines for which there was a significant loss of data when the facilities were destroyed during a military invasion in 1990. An initial pipeline system assessment identified issues and actions regarding condition of the pipelines, corridors, requirements on in-line inspection (ILI), documentation, RISK assessment, status of international code compliance, and overall state of the system. Following recommendations from that initial assessment led to the development of a long term strategy; the execution of which required the implementation of a comprehensive integrity management program. This case study discusses the results obtained after five years of implementation of TPIMS at KOC. It will demonstrate some of the complex components involved in managing the integrity of the Transit System that have been made possible through the implementation of the system. The general concept and structure of TPIMS will be described, and how it deals with the complexity of the KOC pipeline system. The system made it possible to integrate and manage data from various sources, by conducting integrity assessment using ILI, Direct Assessment and hydrostatic testing, as well as structure a comprehensive RISK & Decision Support mechanism. This is one of the world’s first implementations of this magnitude which encompasses such a wide range of services and variables; all being managed in a single environment and utilized by a multitude of users in different areas at KOC. The biggest challenge in a project of this scope is data management. Examples will be shown of the integration structure to illustrate the benefits of using a single comprehensive and versatile platform to manage system requirements; ultimately providing system reliability and improving overall operational efficiency.


Author(s):  
Dario Zapata ◽  
Ingrid Pederson ◽  
Sean Keane

Safety case is utilized within the Enbridge Pipeline Integrity Management Program as a means to provide evidence that the risks affecting the system have been effectively mitigated (LeBlanc, et al. 2016). The safety case is an independent, evidence-based assessment based on system integrity management processes applied across all pipelines. This paper describes the process in which safety case methodology was implemented to manage geohazard threats. The benefits of assessing geohazard and other integrity threats will also be discussed. The safety case report documents the opportunities to address the identified problems in addition to the relationship between hazards, implemented controls, and associated susceptibility. To demonstrate that adequate safety controls for geohazard threats have been incorporated into the operational and maintenance phase of the pipeline system, the geohazard management component of the safety case was assessed using a bowtie diagram. The results gave visibility to the geohazard program and its effectiveness. Predefined safety performance metrics with probabilistic and deterministic criteria are evaluated to confirm the geohazard program’s continued effectiveness. Results from the safety case assessment identify opportunities for improvement and provide a basis for revision to maintenance, assurance and verification programs. Ultimately the assessment demonstrates that geohazard threats in the pipeline system are being recognized and assessed. The assessment provides evidence that adequate resources and efforts are allocated to mitigate the risk and identifies continuous improvement activities where needed. The safety case report generated as the final portion of an integrity management framework demonstrates risk is as low as reasonably practicable (ALARP).


Author(s):  
Bushra Waheed ◽  
Brodie Couch ◽  
Gouri Bhuyan ◽  
Hassan Iqbal ◽  
Eddie Lee

Integrity Management Program (IMP) is a systematic and documented program for assuring asset integrity throughout the full life cycle of an asset. To ensure safe and reliable operation, the British Columbia Oil and Gas Commission (Commission) has been requiring its licensed pipeline operators through its regulations to develop and implement pipeline integrity management programs (IMPs) in accordance with Canadian Industry Standard CSA Z662. The auditing process, the collated results and findings from the IMP audit years (2011–15) were published in IPC 2016-64161[1]. Since 2016, the Commission has enhanced its IMP compliance assurance process, and aligned it with the management system approach using Deming’s model of plan-do-check-act (PDCA) for IMP components and incorporated a lifecycle approach that spans the entire lifecycle of a pipeline system from planning to abandonment. In addition, the Commission has adopted a multi-criteria decision-making approach when prioritizing which operators to audit. This method utilizes weighted rank approach and takes into account multiple factors, such as, previous IMP audit results, pipeline length and product, class location, incident frequency, and asset age. Through collaborative efforts with the University of British Columbia (Okanagan), an innovative risk based audit tool — Integrity Management Program Audit and Knowledge Tool (IMPAKT) has been developed to help evaluate the compliance of operators’ IMP in terms of the management system approach and its associated risk. This tool conducts three-dimensional analysis of IMP performance using the failure mode effect analysis (FMEA) technique and allows the Commission to generate a risk profile for each IMP component to determine which components are most critical, requiring immediate attention. The final audit results are presented as a Risk Priority Number (RPN), which is a product of severity, occurrence and action. An effective integrity management program requires a strong safety culture, therefore, safety culture aspects are incorporated into the risk based auditing tool, IMPAKT. This risk based evaluation process also allows the Commission to develop a compliance benchmark to make comparison between different operators’ IMP results for continuous performance improvement. This paper presents the innovative approach developed and implemented by the Commission for the IMP compliance oversight (auditing) process and implication of such changes.


Author(s):  
Mario Pezzi Filho ◽  
Jose´ Flavio A. Carvalho ◽  
Mike Gloven ◽  
Elaine Hendren ◽  
Steve Gosse

This paper covers some challenges encountered in the development of a risk management system for onshore natural gas and hazardous liquid pipelines. This system is based on the premises of PID – Petrobras Pipeline Integrity Management Program that defines rules for risk calculation and risk mitigation actions to be carried out whenever risk is above a level defined as tolerable. Commercial risk assessment software was customized to PID and is being upgrade with an algorithm able to assist in optimizing risk mitigation projects based on proposed scenarios. This study presents the challenges and benefits of implementing such a risk management system on a prototype pipeline system and the difficulties faced along the development of a scenario optimization algorithm, which is still in progress at the date of its publication.


2010 ◽  
Vol 26 (02) ◽  
pp. 106-110
Author(s):  
Ge Wang ◽  
Michael Lee ◽  
Chris Serratella ◽  
Stanley Botten ◽  
Sam Ternowchek ◽  
...  

Real-time monitoring and detection of structural degradation helps in capturing the structural conditions of ships. The latest nondestructive testing (NDT) and sensor technologies will potentially be integrated into future generations of the structural integrity management program. This paper reports on a joint development project between Alaska Tanker Company, American Bureau of Shipping (ABS), and MISTRAS. The pilot project examined the viability of acoustic emission technology as a screening tool for surveys and inspection planning. Specifically, testing took place on a 32-year-old double-hull Trans Alaska Pipeline System (TAPS) trade tanker. The test demonstrated the possibility of adapting this technology in the identification of critical spots on a tanker in order to target inspections. This targeting will focus surveys and inspections on suspected areas, thus increasing efficiency of detecting structural degradation. The test has the potential to introduce new inspection procedures as the project undertakes the first commercial testing of the latest acoustic emission technology during a tanker's voyage.


Author(s):  
Alex J. Baumgard ◽  
Tara L. Coultish ◽  
Gerry W. Ferris

Over the last 15 years, BGC Engineering Inc. has developed and implemented a geohazards Integrity Management Program (IMP) with 12 major pipeline operators (consisting of gas and oil pipelines and of both gathering and transmission systems). Over this time, the program has been applied to the assessment of approximately 13,500 individual hydrotechnical and geotechnical geohazard sites spanning approximately 63,000 km of operating pipelines in Canada and the USA. Hydrotechnical (watercourse) and geotechnical (slope) hazards are the primary types of geohazards that have directly contributed to pipeline failures in Canada. As with all IMPs, the core objectives of a geohazard management system are to ensure a proactive approach that is repeatable and defensible. In order to meet these objectives, the program allows for varying levels of intensity of inspection and a recommended timescale for completion of actions to manage the identified geohazards in accordance with the degree of hazard that the site poses to the pipeline. In this way, the sites are managed in a proactive manner while remaining flexible to accommodate the most current conditions at each site. This paper will provide a background to the key components of the program related specifically to existing operating pipeline systems, present pertinent statistics on the occurrence of various types of geohazards based on the large dataset of inspections, and discuss some of the lessons learned in the form of program results and program challenges from implementing a geohazard integrity management system for a dozen operators with different ages of systems, complexity of pipeline networks, and in varied geographic settings.


Author(s):  
Lawrence Ator ◽  
Minh Ho

The National Energy Board of Canada (NEB), a federal energy regulator, has implemented a management system audit program as a tool to verify compliance with its predominantly goal-oriented Onshore Pipeline Regulations, 1999 (OPR) [1]. The OPR allow individual companies to choose the most effective way to manage their pipeline systems. The audit program is based on expected elements that the NEB believes are necessary to meet the goals of the OPR. This paper will explain why these audits and expected elements are necessary and describe how goal-oriented regulations will enhance pipeline safety. The audits conducted to date have identified several challenges that the NEB and pipeline companies face in pursuit of the goal of safe pipelines; these will be described and possible solutions will be proposed. The overall objective of the paper is to explain the benefits of using a management system approach to direct a company’s pipeline integrity management program and what is required of companies to meet the expectations of the NEB.


Author(s):  
Luis Sanchez Graciano ◽  
Hernan Paz ◽  
Mirek Urednicek

This paper describes the work that was undertaken to re-qualify the Cactus-Guadalajara LPG pipeline for a higher MAOP without taking the pipeline out of service for a hydrostatic test. It demonstrates how geo-positioning technology, high-resolution in-line inspection, and data management systems can be successfully utilized for such project, even when the record-keeping associated with previous pipeline repairs has been deficient. By establishing a geo-referenced pipeline asset management system that integrates physical asset description, operational data, internal inspection and pipeline repair data, a sound foundation has been created for the future integrity management of this pipeline.


Author(s):  
Garry L. Sommer ◽  
Brad S. Smith

Enbridge Pipelines Inc. operates one of the longest and most complex pipeline systems in the world. A key aspect of the Enbridge Integrity Management Program (IMP) is the trending, analysis, and management of data collected from over 50 years of pipeline operations. This paper/presentation describes Enbridge’s challenges, learnings, processes, and innovations for meeting today’s increased data management/integration demands. While much has been written around the premise of data management/integration, and many software solutions are available in the commercial market, the greatest data management challenge for mature pipeline operators arises from the variability of data (variety of technologies, data capture methods, and data accuracy levels) collected over the operating history of the system. Ability to bring this variable data set together is substantially the most difficult aspect of a coordinated data management effort and is critical to the success of any such project. Failure to do this will result in lack of user confidence and inability to gain “buy-in” to new data management processes. In 2001 Enbridge began a series of initiatives to enhance data management and analysis. Central to this was the commitment to accurate geospatial alignment of integrity data. This paper/presentation describes Enbridge’s experience with development of custom software (Integrated Spatial Analysis System – ISAS) including critical learnings around a.) Data alignment efforts and b.) Significant efforts involved in development of an accurate pipe centreline. The paper/presentation will also describe co-incident data management programs that link to ISAS. This includes enhanced database functionality for excavation data and development of software to enable electronic transfer of data to this database. These tools were built to enable rapid transfer of field data and “real time” tool validation through automated unity plots of tool defect data vs. that measured in the field.


Sign in / Sign up

Export Citation Format

Share Document