Management System Audits: A Path Towards Safer Pipelines

Author(s):  
Lawrence Ator ◽  
Minh Ho

The National Energy Board of Canada (NEB), a federal energy regulator, has implemented a management system audit program as a tool to verify compliance with its predominantly goal-oriented Onshore Pipeline Regulations, 1999 (OPR) [1]. The OPR allow individual companies to choose the most effective way to manage their pipeline systems. The audit program is based on expected elements that the NEB believes are necessary to meet the goals of the OPR. This paper will explain why these audits and expected elements are necessary and describe how goal-oriented regulations will enhance pipeline safety. The audits conducted to date have identified several challenges that the NEB and pipeline companies face in pursuit of the goal of safe pipelines; these will be described and possible solutions will be proposed. The overall objective of the paper is to explain the benefits of using a management system approach to direct a company’s pipeline integrity management program and what is required of companies to meet the expectations of the NEB.

Author(s):  
Bushra Waheed ◽  
Brodie Couch ◽  
Gouri Bhuyan ◽  
Hassan Iqbal ◽  
Eddie Lee

Integrity Management Program (IMP) is a systematic and documented program for assuring asset integrity throughout the full life cycle of an asset. To ensure safe and reliable operation, the British Columbia Oil and Gas Commission (Commission) has been requiring its licensed pipeline operators through its regulations to develop and implement pipeline integrity management programs (IMPs) in accordance with Canadian Industry Standard CSA Z662. The auditing process, the collated results and findings from the IMP audit years (2011–15) were published in IPC 2016-64161[1]. Since 2016, the Commission has enhanced its IMP compliance assurance process, and aligned it with the management system approach using Deming’s model of plan-do-check-act (PDCA) for IMP components and incorporated a lifecycle approach that spans the entire lifecycle of a pipeline system from planning to abandonment. In addition, the Commission has adopted a multi-criteria decision-making approach when prioritizing which operators to audit. This method utilizes weighted rank approach and takes into account multiple factors, such as, previous IMP audit results, pipeline length and product, class location, incident frequency, and asset age. Through collaborative efforts with the University of British Columbia (Okanagan), an innovative risk based audit tool — Integrity Management Program Audit and Knowledge Tool (IMPAKT) has been developed to help evaluate the compliance of operators’ IMP in terms of the management system approach and its associated risk. This tool conducts three-dimensional analysis of IMP performance using the failure mode effect analysis (FMEA) technique and allows the Commission to generate a risk profile for each IMP component to determine which components are most critical, requiring immediate attention. The final audit results are presented as a Risk Priority Number (RPN), which is a product of severity, occurrence and action. An effective integrity management program requires a strong safety culture, therefore, safety culture aspects are incorporated into the risk based auditing tool, IMPAKT. This risk based evaluation process also allows the Commission to develop a compliance benchmark to make comparison between different operators’ IMP results for continuous performance improvement. This paper presents the innovative approach developed and implemented by the Commission for the IMP compliance oversight (auditing) process and implication of such changes.


Author(s):  
Alex J. Baumgard ◽  
Tara L. Coultish ◽  
Gerry W. Ferris

Over the last 15 years, BGC Engineering Inc. has developed and implemented a geohazards Integrity Management Program (IMP) with 12 major pipeline operators (consisting of gas and oil pipelines and of both gathering and transmission systems). Over this time, the program has been applied to the assessment of approximately 13,500 individual hydrotechnical and geotechnical geohazard sites spanning approximately 63,000 km of operating pipelines in Canada and the USA. Hydrotechnical (watercourse) and geotechnical (slope) hazards are the primary types of geohazards that have directly contributed to pipeline failures in Canada. As with all IMPs, the core objectives of a geohazard management system are to ensure a proactive approach that is repeatable and defensible. In order to meet these objectives, the program allows for varying levels of intensity of inspection and a recommended timescale for completion of actions to manage the identified geohazards in accordance with the degree of hazard that the site poses to the pipeline. In this way, the sites are managed in a proactive manner while remaining flexible to accommodate the most current conditions at each site. This paper will provide a background to the key components of the program related specifically to existing operating pipeline systems, present pertinent statistics on the occurrence of various types of geohazards based on the large dataset of inspections, and discuss some of the lessons learned in the form of program results and program challenges from implementing a geohazard integrity management system for a dozen operators with different ages of systems, complexity of pipeline networks, and in varied geographic settings.


Author(s):  
Alberto Valdes ◽  
Richard McNealy

Direct Assessment is allowed under the new Gas Pipeline Integrity Management Rules published by the Office of Pipeline Safety as an assessment method subject to specific applicability restrictions, direct examination criteria and restrictions to re-inspection intervals. The final developed costs for implementing direct assessment is largely dependent upon the extent of direct examination that in turn is a function of the pipeline condition and actual threats discovered and validated. Effective utilization of Direct Assessment within an Integrity Management Program is dependent upon the recognition of the value inherent in the Pre-Assessment Stage of the Direct Assessment Process as defined by the Rule, in which, threats are predicted, applicability confirmed and as a result of data and risk analysis, it is possible to estimate the condition of the pipeline to determine if the use of Direct Assessment is a practical consideration as well as permitted under the Gas Pipeline Integrity Management Rule.


Author(s):  
Joe Paviglianiti ◽  
Alan Murray ◽  
Tijani (TJ) Elabor

As a result of numerous stress corrosion cracking incidents in the 1980s and early 1990 the National Energy Board (NEB) held an Inquiry1 in 1995 on the SCC failure mechanism and how to prevent failures. One of the recommendations of the Inquiry was Companies were to develop a SCC management program to proactively identify and mitigate SCC. Based on the apparent success of the SCC programs in significantly reducing SCC failures, the NEB revised its Onshore Pipeline Regulations in 1999 (OPR-99)2 to require companies to develop an integrity management program (IMP) for all hazards. This paper discusses the evolution of integrity management program (IMP) requirements and evaluates incident rates and other performance metrics to determine if there is evidence that IMPs have contributed to the improvement of safety of pipelines. The paper highlights the challenges associated with gathering incident and IMP performance metrics and evaluating the data to determine if there is a correlation between the implementation of IMP and pipeline safety. In addition, the analysis discusses the challenges associated with comparing data between different countries and regulatory jurisdictions. Suggestions for future improvement are identified.


Author(s):  
Honglong Zheng ◽  
Muyang Ai ◽  
Lijian Zhou ◽  
Mingfei Li ◽  
Ting Wang ◽  
...  

As a preventative management mode, integrity management which is significantly effective is now applicable in modern industry. Based on the successful application of integrity management for the pipeline, managers expect an extension of the integrity management program for the oil and gas stations such as pumping stations, so as to make the best arrangement of resources and guarantee the safety of station facilities. The differences between station integrity management system in China and abroad are analyzed. It is claimed that the oil and gas station integrity management is more difficult and complicated in China. An integrity management program is developed for the oil and gas stations in China. The authors summarily introduce the station integrity management framework, and determine the processes and elements of management. For the main parts of the stations are plenty of facilities, the authors attempt to carry out the management on each category of facilities in particular. According to the characteristics and working status, field facilities can be classified into three categories: static facilities, dynamic facilities, and electrical instruments. For all these facilities, integrity management approach consists of five steps: data collection, risk assessment, integrity assessment, repair & maintenance, and performance evaluation. Station integrity management system comprises five aspects: system documents, standards & specifications, supporting technologies, management platforms and applications. This paper should be considered as a reference for the oil and gas station integrity managers in the future.


2010 ◽  
Vol 659 ◽  
pp. 55-60
Author(s):  
János Lukács ◽  
Gyula Nagy ◽  
Imre Török

The lifetime management of different engineering structures and structural elements is one of the important technical-economic problems nowadays. On the one hand, the aim of our research work is to develop an integrity management plan for pipelines and pipeline systems, and afterwards a Pipeline Integrity Management System. Material databases play important role both on the integrity management and on the engineering critical assessment of the pipeline systems. On the other hand, the aim of our research work is to establish the Pipeline Integrity Management System with different data, frequently with experimental data. The direct purpose of the paper is to present the role of the external and internal reinforcing on the structural integrity of industrial and transporting steel pipelines, based on own examinations. External and internal reinforcement was developed using carbon fibre and glass fibre polymer matrix composites, respectively. Fatigue and burst tests were performed on pipeline sections containing natural and artificial metal loss defects, and girth welds including weld defects. Both unreinforced and reinforced pipeline sections were examined. The burst pressures belonging to the unreinforced and the reinforced pipelines, and belonging to the passed and not passed girth welds were compared.


Author(s):  
Terry Boss ◽  
J. Kevin Wison ◽  
Charlie Childs ◽  
Bernie Selig

Interstate natural gas transmission pipelines have performed some standardized integrity management processes since the inception of ASME B3.18 in 1942. These standardized practices have been always preceded by new technology and individual company efforts to improve processes. These standardized practices have improved through the decades through newer consensus standard editions and the adoption of pipeline safety regulations (49 CFR Part 192). The Pipeline Safety Improvement Act which added to the list of these improved practices was passed at the end of 2002 and has been recently reaffirmed in January of 2012. The law applies to natural gas transmission pipeline companies and mandates additional practices that the pipeline operators must conduct to ensure the safety and integrity of natural gas pipelines with specific safety programs. Central to the 2002 Act is the requirement that pipeline operators implement an Integrity Management Program (IMP), which among other things requires operators to identify so-called High Consequence Areas (HCAs) on their systems, conduct risk analyses of these areas, and perform baseline integrity assessments and reassessments of each HCA, according to a prescribed schedule and using prescribed methods. The 2002 Act formalized, expanded and standardized the Integrity Management (IM) practices that individual operators had been conducting on their pipeline systems. The recently passed 2012 Pipeline Safety Act has expanded this effort to include measures to improve the integrity of the total transmission pipeline system. In December 2010, INGAA launched a voluntary initiative to enhance pipeline safety and communicate the results to stakeholders. The efforts are focused on analyzing data that measures the effectiveness of safety and integrity practices, detects successful practices, identifies opportunities for improvement, and further focuses our safety performance by developing an even more effective integrity management process. During 2011, a group chartered under the Integrity Management Continuous Improvement initiative(IMCI) identified information that may be useful in understanding the safety progress of the INGAA membership as they implemented their programs that were composed of the traditional safety practices under DOT Part 192, the PHMSA IMP regulations that were codified in 2004 and the individual operator voluntary programs. The paper provides a snapshot, above and beyond the typical PHMSA mandated reporting, of the results from the data collected and analyzed from this integrity management activity on 185,000 miles of natural gas transmission pipelines operated by interstate natural gas transmission pipelines. Natural gas transmission pipeline companies have made significant strides to improve their systems and the integrity and safety of their pipelines in and beyond HCAs. Our findings indicate that over the course of the data gathering period, pipeline operators’ efforts are shown to be effective and are resulting in improved pipeline integrity. Since the inception of the IMP and the expanded voluntary IM programs, the probability of leaks in the interstate natural gas transmission pipeline system continues on a downward slope, and the number of critical repairs being made to pipe segments that are being reassessed under integrity programs, both mandated and voluntary, are decreasing dramatically. Even with this progress, INGAA members committed in 2011 to embarking on a multi-year effort to expand the width and depth of integrity management practices on the interstate natural gas transmission pipeline systems. A key component of that extensive effort is to design metrics to measure the effectiveness to achieve the goals of that program. As such, this report documents the performance baseline before the implementation of the future program.


Author(s):  
Jeffrey Wiese ◽  
Linda Daugherty

This paper discusses the original motivations and objectives of the Integrity Management Program (IMP), the lessons learned from the first decade of implementing IMP, the drivers for improving and expanding IMP (“IMP 2.0”), actions that the Department of Transportation’s Pipeline and Hazardous Material Safety Administration (PHMSA) is already taking under the IMP 2.0 umbrella, as well as the future direction the Office of Pipeline Safety (OPS) expects IMP 2.0 to take in the next few years.


Author(s):  
M. Robb Isaac ◽  
Saleh Al-Sulaiman ◽  
Monty R. Martin ◽  
Sandeep Sharma

In early 2005, Kuwait Oil Company (KOC) initiated a Total Pipeline Integrity Management System (TPIMS) implementation in order to carry out a major integrity assessment of its operating facilities, equipment, buried plant piping and pipeline network and to establish a continuing integrity management program. KOC Transit System is a complex infrastructure consisting of over three hundred pipelines, thousands of wellhead flow lines, and consumer and offshore lines for which there was a significant loss of data when the facilities were destroyed during a military invasion in 1990. An initial pipeline system assessment identified issues and actions regarding condition of the pipelines, corridors, requirements on in-line inspection (ILI), documentation, RISK assessment, status of international code compliance, and overall state of the system. Following recommendations from that initial assessment led to the development of a long term strategy; the execution of which required the implementation of a comprehensive integrity management program. This case study discusses the results obtained after five years of implementation of TPIMS at KOC. It will demonstrate some of the complex components involved in managing the integrity of the Transit System that have been made possible through the implementation of the system. The general concept and structure of TPIMS will be described, and how it deals with the complexity of the KOC pipeline system. The system made it possible to integrate and manage data from various sources, by conducting integrity assessment using ILI, Direct Assessment and hydrostatic testing, as well as structure a comprehensive RISK & Decision Support mechanism. This is one of the world’s first implementations of this magnitude which encompasses such a wide range of services and variables; all being managed in a single environment and utilized by a multitude of users in different areas at KOC. The biggest challenge in a project of this scope is data management. Examples will be shown of the integration structure to illustrate the benefits of using a single comprehensive and versatile platform to manage system requirements; ultimately providing system reliability and improving overall operational efficiency.


Author(s):  
Colin Scott

Cracks in close proximity may interact and lead to leaks or ruptures at pressures well below the predicted failure pressures of the individual cracks. Several industry organizations and standards, including CEPA, ASME, API, and British Standards provide guidance on the treatment of potentially interacting cracks. This guidance tends to be very conservative. This paper is a study of crack interaction, including a discussion of industry guidance, a critical review of failure pressure models, and a review of results of laboratory hydro-testing of pipe sections containing either in-service flaws or simulated flaws. In some cases the industry guidance and current failure pressure models provide inconsistent predictions, and this leads to uncertainty in the assessments used in routine crack management programs. The results of the hydro-testing are discussed in the context of both types of predictions. Understanding and predicting these interactions is important in maintaining an effective and efficient crack management program. The paper is aimed at engineers involved in integrity assessments and integrity management system process improvement.


Sign in / Sign up

Export Citation Format

Share Document