Region-Specified Ratcheting Behavior of API X80 Welded Joint Under Uniaxial Cyclic Loading

Author(s):  
Hongsheng Lu ◽  
Yonghe Yang ◽  
Gang Chen ◽  
Xu Chen ◽  
Xin Wang

Evaluation of mechanical performance of different regions can be difficult by using standard size samples due to the size limitation of weld metal and heat-affected zone (HAZ). At first, the microstructure of different regions was characterized and quantified by Scanning Electron Microscope, which indicate that the pipeline steel is a typical acicular ferrite steel. In this study the deformation behavior of different regions (base metal, weld metal and heat affected zone) in a welded joint of API X80 pipeline steel were studied by conducting uniaxial loading tests on miniature specimens with the cross section of 2×0.5mm and gauge length of 9mm. From the results of uniaxial tension in base metal and weld metal it is shown that the welding is overmatching. Compared to the base metal, the coarse grained HAZ exhibits a lower strength, while the fine grained HAZ exhibits a higher strength. Under near zero-to-tension cyclic stress loading, all regions of the welded joints exhibit progressive accumulation of plastic strain. Under the same stress level, the base metal shows the fastest ratcheting strain accumulation, which is the result of lower strength than other regions. This fact may indicate that the ratcheting behavior of the overall welded joint is highly dependence on that of base metal for the present case. But when under the same normalized stress level (σ = σ/σYS), the fine grained HAZ has the highest ratcheting strain accumulation, while the coarse grained HAZ has the lowest ratcheting strain accumulation, which reveals that the intrinsic resistance to ratcheting is yield strength dependent.

Author(s):  
Yoshio Takagi ◽  
Shigeru Otsuki ◽  
Takuya Ito ◽  
Isamu Nonaka

The creep and the creep-fatigue properties of full repair welds (FRW) and partial repair welds (PRW) were evaluated in this study. Since the PRW contained the service-aged girth weld which was the weak link of the cross weld, the PRW was a shorter creep strength than the FRW. Moreover, the PRW showed a remarkably shorter creep-fatigue life compared to that of the FRW. In order to consider the poor creep-fatigue properties of PRW, finite element (FEM) analysis was conducted with experimentally measured material constants using service-aged base metal, aged weld metal, simulated coarse-grained HAZ, simulated fine-grained HAZ and repair weld metal. The analysis revealed that the strain concentrated on the aged and softened base metal or girth weld metal of the repair-welded cross weld specimen and not on the virgin cross weld specimen. The failure locations in creep-fatigue tests were close to the strain concentrated zone. Thus, the strain concentration is considered to work as a significant role and dominate the creep-fatigue properties of repair welds. In addition, the ductility of the weld metal was much less than that of the base metal. Consequently, the interaction of the strain concentration and the lack of ductility induced the lesser creep-fatigue properties of the PRW.


2012 ◽  
Vol 538-541 ◽  
pp. 1478-1483 ◽  
Author(s):  
Yu Qun Yin ◽  
Hong Hong Wang ◽  
Yong Kuan Yao ◽  
Li Li ◽  
Xuan Wei Lei ◽  
...  

Welding thermal cycle simulation with the heat input of 12~25 kJ/cm and practical welding were undertaken to investigate the weldability of a Zr-Ti microalloyed pipeline steel X120. The microstructure in the simulated coarse-grained heat-affected zone was predominantly bainite. The Vickers hardness and room temperature impact toughness of simulated coarse-grained heat-affected zone is 276~297 (HV10) and 208~225 J, respectively. These results indicated that the X120 steel had good weldability. Practical plate welding with the heat input of 21 kJ/cm also showed that the Zr-Ti microalloyed pipeline steel X120 had high yeild strength (895 MPa) and low temperature (-30°C) impact toughness (183 J, 204 J and 208 J in the fusion line, coarse-grained heat-affected zone and fine-grained heat-affected zone, respectively).


Metallurgist ◽  
2021 ◽  
Vol 64 (9-10) ◽  
pp. 875-884
Author(s):  
K. G. Vorkachev ◽  
P. P. Stepanov ◽  
L. I. Éfron ◽  
M. M. Kantor ◽  
A. V. Chastukhin ◽  
...  

2018 ◽  
Vol 37 (6) ◽  
pp. 587-595
Author(s):  
Zhandong Wan ◽  
Wei Guo ◽  
Qiang Jia ◽  
Lang Xu ◽  
Peng Peng

AbstractDP980 steels were joined using fiber laser welding. The welded joint was characterized in terms of hardness distribution and tensile behavior at room temperature, 150 ℃, and 300 ℃, respectively. The fine-grained martensite in supercritical heat affected zone (HAZ) resulted in the highest hardness (428 Hv), while the tempered martensite contributed to the hardness decreasing (‒31 Hv). Both the ultimate tensile strength and yield strength of the base metal and welded joint decreased at 150 ℃, and then increased at 300 ℃ due to dynamic strain aging (DSA). The welded joint exhibited slightly higher yield strength and lower elongation at all the test temperatures compared to base metal due to the hardened fusion zone. The energy absorption reduced slightly with increasing temperature both for base metal and welded joint, and the weld posed a minor effect on the energy absorption. Deformation was one of the requirements for DSA effect. DSA enhanced the hardness of base metal (+78 Hv) and softened zone (+53 Hv). HAZ was not softened enough to become the weakest position during tensile test.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1325 ◽  
Author(s):  
Jian-Bao Wang ◽  
Guang-Chun Xiao ◽  
Wei Zhao ◽  
Bing-Rong Zhang ◽  
Wei-Feng Rao

The microstructure and corrosion resistance in H2S environments for various zones of X80 pipeline steel submerged arc welded joints were studied. The main microstructures in the base metal (BM), welded metal (WM), coarse-grained heat-affected zone (CGHAZ), and fine-grained heat-affected zone (FGHAZ) were mainly polygonal ferrite and granular bainite; acicular ferrite with fine grains; granular bainite, ferrite, and martensite/austenite constituents, respectively. The corrosion behavior differences resulted from the microstructure gradients. The results of the micro-morphologies of the corrosion product films and the electrochemical corrosion characteristics in H2S environments, including open circuit potential and electrochemical impedance spectroscopy, showed that the order of corrosion resistance was FGHAZ > BM > WM > CGHAZ.


Author(s):  
Vigdis Olden ◽  
Odd Magne Akselsen

Fracture mechanics SENT testing and FE simulation to establish hydrogen influenced cohesive parameters for X70 structural steel welded joints have been performed. Base metal and weld simulated coarse grained heat affected zone have been included in the study. The base metal did not fail at net section stresses lower than 1.29 times the yield strength and reveals low sensitivity to hydrogen embrittlement. The weld simulated coarse grained heat affected zone was prone to fracture at stresses above 64% of the yield strength, which indicates hydrogen embrittlement susceptibility. The cohesive parameters best fitting the experiments are δc = 0.3 mm and σc = 1700 MPa (3.5·σy) for the base metal and δc = 0.3 mm and σc = 2100 MPa (2.6·σy) for the coarse grained heat affected zone.


2019 ◽  
Vol 50 (7) ◽  
pp. 3080-3090 ◽  
Author(s):  
Y. Liu ◽  
S. Tsukamoto ◽  
H. Hongo ◽  
F. Yin ◽  
M. Tabuchi ◽  
...  

Author(s):  
Takashi Ogata

Grade 91 is widely used for steam pipes and tubes in high temperature boilers of ultra-super critical power plants in Japan. It was reported that creep damage may initiate at the fine grain region within the heat affected zone (HAZ) in welded joints prior to the base metal, so called “Type IV” damage, which causes steam leakage in existing power plants. Therefore, development of creep damage assessment methods is not only an important but also an urgent subject to maintain operation reliability. In order to evaluate creep damage of welded joints based on finite element analyses, creep deformation properties of a base metal, a weld metal and a HAZ have to be obtained from creep tests. However, it is difficult to cut a standard size creep specimen from the HAZ region. Only a miniature size specimen is available from the narrow HAZ region. Therefore, development of creep testing and evaluation technique for miniature size specimens is highly expected. In this study, a miniature tensile type solid bar specimen with 1mm diameter was machined from a base metal, a weld metal and a HAZ of a new and a used Grade 91 welded joints, and creep tests of these miniature specimens were conducted by using a special developed creep testing machine. It was found that creep deformation property is almost identical between the base metal and weld metal, and creep strain rate of the HAZ is much faster than that of these metals in the new welded joint. Relationships between stress and creep strain rates of the base metal and the HAZ in the used welded joint are within scatter bands of those in the new material. On the other hand, creep strain rate of the weld metal in the used welded joint became much faster than that in the new one. Then both the standard size and the miniature size cross weld specimens were machined from the new and the used welded joints and were tested under the same temperature and stress conditions. Rupture time of the miniature cross weld specimen is much shorter than that of the standard size cross weld specimen. The finite element creep analysis of the specimens indicates that higher triaxiality stress yields within the HAZ of the standard size specimen than that of the miniature specimen causing faster creep strain rate in the HAZ of the miniature cross weld specimen.


Sign in / Sign up

Export Citation Format

Share Document