Hardness Evolution and High Temperature Mechanical Properties of Laser Welded DP980 Steel Joints

2018 ◽  
Vol 37 (6) ◽  
pp. 587-595
Author(s):  
Zhandong Wan ◽  
Wei Guo ◽  
Qiang Jia ◽  
Lang Xu ◽  
Peng Peng

AbstractDP980 steels were joined using fiber laser welding. The welded joint was characterized in terms of hardness distribution and tensile behavior at room temperature, 150 ℃, and 300 ℃, respectively. The fine-grained martensite in supercritical heat affected zone (HAZ) resulted in the highest hardness (428 Hv), while the tempered martensite contributed to the hardness decreasing (‒31 Hv). Both the ultimate tensile strength and yield strength of the base metal and welded joint decreased at 150 ℃, and then increased at 300 ℃ due to dynamic strain aging (DSA). The welded joint exhibited slightly higher yield strength and lower elongation at all the test temperatures compared to base metal due to the hardened fusion zone. The energy absorption reduced slightly with increasing temperature both for base metal and welded joint, and the weld posed a minor effect on the energy absorption. Deformation was one of the requirements for DSA effect. DSA enhanced the hardness of base metal (+78 Hv) and softened zone (+53 Hv). HAZ was not softened enough to become the weakest position during tensile test.

2012 ◽  
Vol 482-484 ◽  
pp. 981-984
Author(s):  
Cheng Jin ◽  
Chun Yuan Shi

Effects of thermal cycling on the tensile strength of aluminum alloy welded joints are studied experimentally in this paper. The damage mechanisms are also analyzed based on the microstructure observations. Results reveal that certain thermal cycling can cause strength decrease especially at the heat affected zone of the aluminum alloy welded joint. The cyclic temperature and the external load are the key factors which influence the strength of the welded joint specimens, while the cyclic period has a minor effect in thermal cycling conditions. Microstructure analysis also shows that voids nucleation and evolution governs the damage process under thermal cycling condition.


Author(s):  
Masahito Mochizuki ◽  
Masao Toyoda ◽  
Masayuki Inuzuka ◽  
Hidehito Nishida

Mechanical properties and fracture toughness in friction stir welded joint of vessels of structural aluminum alloy type A5083-O are investigated. Welded joint from 25 mm-thick plate is fabricated by one-side one-pass friction stir. Charpy impact energy and critical crack-tip opening displacement (CTOD) in friction stir weld are much higher than those of base metal or heat-affected zone, whereas mechanical properties such as stress-strain curve and Vickers hardness do not have a conspicuous difference. Effects of microstructure on crack initiation and propagation are studied in order to clarify the difference of fracture toughness between stir zone and base metal. Both tensile test and bending test show that the fine-grained microstructure in stir zone induces to increase ductile crack initiation and propagation resistance by analyzing fracture resistance curves and diameter of dimples in fracture surface. It is found that high fracture toughness value in stir zone is affected fine-grained microstructure by friction stirring.


Author(s):  
Hongsheng Lu ◽  
Yonghe Yang ◽  
Gang Chen ◽  
Xu Chen ◽  
Xin Wang

Evaluation of mechanical performance of different regions can be difficult by using standard size samples due to the size limitation of weld metal and heat-affected zone (HAZ). At first, the microstructure of different regions was characterized and quantified by Scanning Electron Microscope, which indicate that the pipeline steel is a typical acicular ferrite steel. In this study the deformation behavior of different regions (base metal, weld metal and heat affected zone) in a welded joint of API X80 pipeline steel were studied by conducting uniaxial loading tests on miniature specimens with the cross section of 2×0.5mm and gauge length of 9mm. From the results of uniaxial tension in base metal and weld metal it is shown that the welding is overmatching. Compared to the base metal, the coarse grained HAZ exhibits a lower strength, while the fine grained HAZ exhibits a higher strength. Under near zero-to-tension cyclic stress loading, all regions of the welded joints exhibit progressive accumulation of plastic strain. Under the same stress level, the base metal shows the fastest ratcheting strain accumulation, which is the result of lower strength than other regions. This fact may indicate that the ratcheting behavior of the overall welded joint is highly dependence on that of base metal for the present case. But when under the same normalized stress level (σ = σ/σYS), the fine grained HAZ has the highest ratcheting strain accumulation, while the coarse grained HAZ has the lowest ratcheting strain accumulation, which reveals that the intrinsic resistance to ratcheting is yield strength dependent.


2017 ◽  
Vol 734 ◽  
pp. 310-318 ◽  
Author(s):  
Yi Shuai Jiang ◽  
Shang Lei Yang ◽  
Yan Wang ◽  
Zhi Hua Yang

A7N01 aluminum alloy with the thickness of 10mm is welded using fiber laser with filler wire, the microstructures and mechanical properties of the welding joints are observed and analyzed by microhardness and tensile testers, SEM. The results show that the crystalline morphology of the welding metal is equiaxial as-cast. the columnar crystals exist in the fusion zone next to the weld interface. A softening zone with the width of 1.6 mm is formed in the heat affected zone. Micro-hardness of the welding joint distributes uniformly, the highest is in base metal which is 110 HV and the lowest is in the welding joint which is 73 HV. The tensile strength of the welded joint is 281 MPa, the strength coefficient reached 70.6%. the fatigue strengths of the laser welded joint and the base metal are investigated. The results show that the conditional fatigue strength (107) of the laser welded joint can reach up to 63.6% of that of the base metal. there are fatigue striations generated during the steady-state region.


2015 ◽  
Vol 828-829 ◽  
pp. 279-284
Author(s):  
N.G. Ross ◽  
A. Elrefaey ◽  
Richard Kretz ◽  
Helmut Kilian

Compared to Al alloys Mg alloys are generally slower to extrude and this makes them expensive to process. However, making alloys easier to extrude usually equates to reduced extrudate strength. The effects of extrusion parameter, billet heat treatments and alloying element concentration on extrudability and extrudate mechanical properties are compared using four lean ZK alloys. By weight percent there was a greater increase in peak extrusion pressure and extrudate yield strength from increasing Zr than from Zn. Homogenising the extrusion billets had no effect on the lean alloys and only a minor effect on the richer alloys. Alloying element concentration has the most effect on alloy mechanical properties, while changing the extrusion speed and temperature has little influence on the extrudate mechanical properties.


2018 ◽  
Vol 142 ◽  
pp. 03004 ◽  
Author(s):  
Wen-Quan Wang ◽  
Shu-Cheng Dong ◽  
Fan Jiang ◽  
Ming Cao

Fiber laser welding of cold rolled TRIP steel (transformation Induced Plasticity steel) sheet with tensile strength of 820MPa and thickness of 1.4mm was carried out using shielding gases Ar and He, respectively. For the same laser power and welding speed, the effects of different shielding gases on penetration and bead section morphologies were investigated. The microstructures and properties of the TRIP steel joints were also studied. The investigation showed that higher penetration and lower porosity could be obtained under shielding gas He using the same laser power and welding speed. The microstructures of the TRIP joint mainly included martensite and retained austenite. But the joint microhardness and tensile strength were higher under the shielding gas He. The tensile strength of the welded joint perpendicular to the weld line was equal to that of the base metal. But the tensile strength of the joint parallel with the weld line was higher than that of the base metal. The plasticity and formability of the welded joint were impaired due to the formation of martensite in the weld metal.


2020 ◽  
pp. 99-108
Author(s):  
S B Sapozhnikov ◽  
M A Ivanov ◽  
I A Shcherbakov

In this paper we consider the problems arising in the numerical estimation of the ultimate load of welded joints of high-strength steels with slight hardening. The stress concentrator in the transition node from the deposited to the base metal is modeled based on the example of welding a roller wire on a plate made of high-strength steel. The use of welding wire with a yield point lower than that of the base metal allowed to simulate areas of the welded joint with heterogeneous mechanical properties. The geometry of three areas of the welded joint is studied, i.e. weld metal, heat-affected zone (HAZ) and the base metal. Mechanical properties of all three areas are determined by calculation and experimentally. For this purpose, it is proposed to consider the material in all sections as ideally elastic-plastic, and the yield strength is uniquely associated with the hardness in the indentation zone (a Rockwell diamond cone is used). Calculations of the inelastic indentation process by the finite element method (FEM) in axis-symmetric formulation allowed obtaining a linear relationship between the hardness and the yield strength with a coefficient of 0.418. Tests at a quasi-static three-point bend (with stretching in the surfacing area) were carried out on sample beams cut perpendicular to the direction of welding. The “force-deflection” diagrams are obtained and compared with the calculated curves (FEM in a three-dimensional formulation with an explicit consideration of the complex configuration of all sections and different yield stress in the areas determined by local hardness values). There is a good agreement between the calculated and experimental ultimate loads. The proposed method of the three-stage study (determination of local hardness, yield strength in the areas and the ultimate load) can be effectively used to assess the ultimate loads of the welded joints due to the low parametricity of the proposed models of materials inelastic deformation in areas for which it is impossible to manufacture standard samples for the study of mechanical properties. The experimental study of the strengthening effect of the seam with a stress concentrator in the form of an angle of 90 degrees on the value of the ultimate bending load showed that the removal of the deposited metal does not lead to an increase in the ultimate load of the welded joint when using the welding wire of low-carbon high-plastic steel.


Alloy Digest ◽  
2012 ◽  
Vol 61 (5) ◽  

Abstract Dillimax 550 is a high-strength quenched and tempered, fine-grained structural steel with a minimum yield strength of 690 MPa (100 ksi). Plate is delivered in three qualities: basic, tough, and extra tough. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and joining. Filing Code: SA-652. Producer or source: Dillinger Hütte GTS.


Alloy Digest ◽  
2012 ◽  
Vol 61 (3) ◽  

Abstract Dillimax 500 is a high-strength quenched and tempered, fine-grained structural steel with a minimum yield strength of 500 MPa (72 ksi). Plate is delivered in three qualities: basic, high toughness, and extra tough. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on surface qualities as well as forming, heat treating, and joining. Filing Code: SA-645. Producer or source: Dillinger Hütte GTS.


Sign in / Sign up

Export Citation Format

Share Document