Fitness for Service Analysis of the Circumferential Extent of Corrosion in Pipelines

Author(s):  
Fan Zhang ◽  
Michael Rosenfeld ◽  
Jeremy Gustafson

The failure of a corroded pipe is generally controlled by the depth and the longitudinal extent of the metal loss area subjected to hoop stress. However, the failure of metal loss due to its circumferential extent under longitudinal stress is possible if significant longitudinal stress exists in the pipe or the metal loss has considerable circumferential extent and depth. If such circumstances exist, it is prudent to conduct a complementary analysis of pipe integrity to assess the potential for circumferential as well longitudinal failure. Most existing approaches for assessing circumferential metal loss, such as Miller’s equations, were derived by assuming the metal loss to be centered at the extreme stress position around the pipe circumference, i.e., the center of the metal loss is centered at the location of the maximum bending stress in the pipe. The assessment may be over-conservative if the metal loss area deviates from the extreme position related to the bending plane. Described in this paper is a new approach to assess the potential for circumferential failure of metal loss centered at an arbitrary angle from the location of maximum bending stress. The approach results in the same failure stress as existing models when the metal loss is centered at the location of maximum bending stress. The failure stress increases when the metal loss deviates from the location of maximum bending stress and reaches the maximum value when the metal loss is centered at the neutral axis. The equations of the model developed in this paper can be easily implemented into a spreadsheet tool for routine integrity assessment. Other considerations related to the assessment of circumferential metal loss are also discussed, including non-uniform corrosion, negligible corrosion, and the interaction of multiple corrosion areas in the same pipe cross section. The model developed in this paper can also be used to determine the cutoff line for plastic collapse in a failure assessment diagram (FAD) based approach for assessing circumferential cracks, such as API 1104 Appendix A and API 579.

Author(s):  
Carlos Alexandre de Jesus Miranda ◽  
Miguel Mattar Neto

A fundamental step in tube plugging management of a Steam Generator (SG), in a Nuclear Power Plant (NPP), is the tube structural integrity evaluation. The degradation of SG tubes may be considered one of the most serious problems found in PWRs operation, mainly when the tube material is the Inconel 600. The first repair criterion was based on the degradation mode where a uniform tube wall thickness corrosion thinning occurred. Thus, a requirement of a maximum depth of 40% of the tube wall thickness was imposed for any type of tube damage. A new approach considers different defects arising from different degradation modes, which comes from the in-service inspections (NDE) and how to consider the involved uncertainties. It is based on experimental results, using statistics to consider the involved uncertainties, to assess structural limits of PWR SG tubes. In any case, the obtained results, critical defect dimensions, are within the regulatory limits. In this paper this new approach will be discussed and it will be applied to two cases (two defects) using typical data of SG tubes of one Westinghouse NPP. The obtained results are compared with ‘historical’ approaches and some comments are addressed from the results and their comparison.


Author(s):  
Qingshan Feng ◽  
Yi-Han Lin ◽  
Fuxiang Wang ◽  
Bin Li

The spiral welded defect of steel oil transmission pipeline is one of the main causes resulting in pipeline leakage accident. Hence the failure assessment for known-size spiral welded defects is an important step to ensure the safety of defected pipeline. Lack of suitable criterion for assessing the spiral welded manufacture defects of pipeline network in China, is a difficult technology problem to be solved desirably. This paper first summarized the basic idea of preliminary failure assessment (Grade 1A of code BS 7910:2005) with some insight of our own understanding, and then applied the preliminary failure assessment to the spiral welded defects of oil pipeline, with the use of ultrasonic inspection data of Daqing-Tieling old pipeline from LingYuan to XinMiao, Northeastern China. The calculation of both fracture and plastic collapse failure for spiral welded defects indicates some detected flaws of pipeline are not safe as the internal pressure is greater than 4.5 MPa. A leakage accident of spiral welded pipeline in Western China is also assessed through fractography analyses and failure calculations. This paper concludes that the preliminary failure assessment provides useful outcome for reference in making decision of inspection, integrity assessment and repair of spiral welded pipeline, and hence is a step of fundamental importance and practical significance before more accurate data becomes available for higher grade assessment.


Author(s):  
Don Robertson ◽  
Wayne Russell ◽  
Nigel Alvares ◽  
Debra Carrobourg ◽  
Graeme King

A strategic combination of integrity software, relational databases, GIS, and GPS technologies reduced costs and increased quality of a comprehensive pipeline integrity assessment and repair program that Greenpipe Industries Ltd. completed recently on three crude oil pipelines—two 6-inch and one 8-inch—for Enbridge Pipelines (Saskatchewan) Inc. Greenpipe analyzed metal loss data from recent in-line inspection logs, calculated real-world coordinates of defects and reference welds, prioritized anomalies for repair taking environmental risks into account, and prepared detailed dig sheets and site maps using PipeCraft™, Greenpipe’s advanced GIS-based pipeline integrity-maintenance software package. GPS technology was used to navigate to dig sites and the accuracy of the GPS approach was compared with traditional chainage methods. Pipelines were purged and all defects were cut out and replaced by new pipe during a two-day shutdown on each pipeline. A comprehensive set of data, including high-accuracy GPS location of anomalies, reference welds, and replacement pipe welds, was collected at each dig site and entered into the PipeCraft relational database. After all repairs were completed, the client was provided with a GIS-based electronic final report, allowing point-and-click access to all data collected in the field, including in-line inspection logs, dig information sheets and as-built drawings. The new methodologies employed on this project resulted in a high quality, comprehensive and cost-effective integrity maintenance program.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 525
Author(s):  
Virgil Florescu ◽  
Stefan Mocanu ◽  
Laurentiu Rece ◽  
Robert Ursache ◽  
Nicolae Goga ◽  
...  

This paper introduces a new method for the use of tensor-resistive sensors in large spherical storage tank equipment (over 12,000-mm diameters). We did an experiment with 19 petroleum or ammonia product sphere-shaped storage tanks with volumes of 1000 and 1800 cubic meters, respectively. The existing literature only contains experiments based on sensors for tanks with diameters no larger than 600 mm. Based on a number of resistive strain sensor measurements on large spherical pressurized vessels regarding structural integrity assessment, the present paper is focused on the comparison between "real-life" obtained sensor data versus finite element method (FEM) simulation results. The present paper is structured in three parts and examines innovative directions: the use of the classic tensor-resistive sensors in a new approach concerning large structural equipment; an original 3D modeling method with the help of the FEM; and conclusions with possible implications on the regulations, design, or maintenance as a result of the attempt of mutual validation of the new methods previously mentioned.


Author(s):  
Gurumurthy Kagita ◽  
Gudimella G. S. Achary ◽  
Mahesh B. Addala ◽  
Balaji Srinivasan ◽  
Penchala S. K. Pottem ◽  
...  

Abstract Mechanical damage in subsea pipelines in the form of local dents / buckles due to excessive bending deformation may severely threaten their structural integrity. A dent / buckle has two significant effects on the pipeline integrity. Notably, residual stresses are set up as result of the plastic deformation and stress concentrations are created due to change in pipe geometry caused by the denting / buckling process. To assess the criticality of a dent / buckle, which often can be associated with strain induced flaws in the highly deformed metal, integrity assessment is required. The objective of this paper is to evaluate the severity of dent / buckle in a 48” subsea pipeline and to make the rerate, repair or replacement decision. This paper presents a Level 3 integrity assessment of a subsea pipeline dent / buckle with metal loss, reported in in-line inspection (ILI), in accordance with Fitness-For-Service Standard API 579-1/ASME FFS-1. In this paper, the deformation process that caused the damage (i.e. dent / buckle) with metal loss is numerically simulated using ILI data in order to determine the magnitude of permanent plastic strain developed and to evaluate the protection against potential failure modes. For numerical simulation, elastic-plastic finite element analyses (FEA) are performed considering the material as well as geometric non-linearity using general purpose finite element software ABAQUS/CAE 2017. Based on the numerical simulation results, the integrity assessment of dented / buckled subsea pipeline segment with metal loss has been performed to assess the fitness-for-service at the operating loads.


Author(s):  
Sergio Cicero ◽  
Virginia Madrazo ◽  
Isidro Carrascal ◽  
Miguel Laporta

This paper analyzes the notch effect and presents a methodology, based on failure assessment diagrams and the notch analysis approaches based on the theory of critical distances, for the structural integrity assessment of notched components, which allows more accurate structural analyses to be made. The methodology is applied to a set of tests performed on PMMA single edge notched bending (senb) specimens, providing better results than those obtained when the analysis is performed considering that notches behave as cracks.


Author(s):  
J. Bruce Nestleroth ◽  
James Simek ◽  
Jed Ludlow

The ability to characterize metal loss and gouging associated with dents and the identification of corrosion type near the longitudinal seam are two of the remaining obstacles with in-line inspection (ILI) integrity assessment of metal loss defects. The difficulty with denting is that secondary features of corrosion and gouging present very different safety and serviceability scenarios; corrosion in a dent is often not very severe while metal loss caused by gouging can be quite severe. Selective seam weld corrosion (SSWC) along older low frequency electric resistance welding (ERW) seams also presents two different integrity scenarios; the ILI tool must differentiate the more serious SSWC condition from the less severe conventional corrosion which just happens to be near a low frequency ERW seam. Both of these cases involve identification difficulties that require improved classification of the anomalies by ILI to enhance pipeline safety. In this paper, two new classifiers are presented for magnetic flux leakage (MFL) tools since this rugged technology is commonly used by pipeline operators for integrity assessments. The new classifier that distinguishes dents with gouges from dents with corrosion or smooth dents uses a high and low magnetization level approach combined with a new method for analyzing the signals. In this classifier, detection of any gouge signal is paramount; the conservatism of the classifier ensures reliable identification of gouges can be achieved. In addition to the high and low field data, the classifier uses the number of distinct metal loss signatures at the dent, the estimated maximum metal loss depth, and the location of metal loss signatures relative to dent profile (e.g. Apex, Shoulder). The new classifier that distinguishes SSWC from corrosion near the longitudinal weld uses two orientations of the magnetic field, the traditional axial field and a helical magnetic field. In this classifier, detection of any long narrow metal loss is paramount; the conservatism of the classifier ensures that high identification of SSWC can be achieved. The relative amplitude of the corrosion signal for the two magnetization directions is an important characteristic, along with length and width measures of the corrosion features. These models were developed using ILI data from pipeline anomalies identified during actual inspections. Inspection measurements from excavations as well as pipe removed from service for lab analysis and pressure testing were used to confirm the results.


Author(s):  
X. Wang ◽  
R. Bell ◽  
S. B. Lambert

The loss of crack tip constraint leads to enhanced resistance to both cleavage and ductile tearing. However, conventional failure assessment schemes (CEGB-R6, BS-7910) use lower bound toughness obtained from highly constrained test specimens. Cracks in many real engineering structures are not highly constrained, which makes failure predictions using conventional failure assessment schemes based on lower bound fracture toughness values overly pessimistic. Excessive pessimism in the structural assessment can lead to unwarranted repair or decommissioning of structures, and thus cause unneeded cost and inconvenience. Recent developments on constraint-based fracture mechanics have enabled the practical assessment of defective components including the constraint effect. For example, the recent revision of R6 and the newly developed structural integrity assessment procedures for European industry (SINTAP) have suggested a framework for failure assessments including the constraint effect. In this paper, the constraint-based failure assessment of surface cracked T-plate welded joints under tension load is presented. Different issues including the constraint-based failure assessment diagrams, the treatment of combining primary and the secondary loads, and the calculation of stress intensity factors, limit loads and constraint parameters for surface cracked T-plate joints are discussed. It is demonstrated that when the lower constraint effect is properly accounted for, the maximum allowable tensile stress level increases substantially.


Author(s):  
Ove R. Samdal ◽  
Anders Kvinnesland ◽  
Kjell Edvard Apeland ◽  
Arthur Lind ◽  
Kjartan Vartdal

Statoil has since 1985 installed, commissioned and operated approximately 8000 km of pipelines in the North Sea area. Among these pipelines are several of the world’s largest offshore gas trunk lines with the onshore parts relatively short in length but often with complex landfalls, fjord and land crossings. Since 2002 Gassco has been the Operator for transporting Norwegian gas to continental Europe and the UK. Gassco is a fully state owned company. Statoil is now TSP (Technical Service Provider) for most of the trunk lines. Operating these pipelines represents several challenges, and the accumulated experience gained through successful operations of these pipelines has brought Statoil to the forefront within the pipeline industry. Through comprehensive research and development Statoil has improved pipeline technology within areas as inspection, maintenance and repair. Together with the development of risk based condition (integrity) assessment, inspection and monitoring planning tools and work processes, these technology achievements have significantly improved Statoil’s knowledge and understanding of the pipeline condition and associated risk levels. A significant reduction in operating cost has also been experienced. Together with its collaborating partners Statoil has among others improved internal inspection technology by improving the MFL technology to a level of extra high resolution (XHR-technology) making metal loss measurements more reliable and accurate. Multi diameter inspection tools (28”–42”) (MDPT) and optical laser tool (Optopig) have also been developed and put into operation. Sub sea pipeline survey by use of ROV has been significantly improved with regard to instrumentation and survey speed. A unique remote pipeline repair contingency system (PRS) with well defined response times (10–21 days), has also been developed. To get the full benefit of these developments a risk based pipeline condition (integrity) management system (PCMS/PIMS) has been developed with the development of DnV’s Orbit Pipeline as a key element. ORBIT Pipeline consists principally of data storage and administration and various risk based integrity assessment modules. This paper will discuss several topics related to these technology developments and development of risk based condition (integrity) assessment.


Sign in / Sign up

Export Citation Format

Share Document