Using 2D and 3D Oil Spill Trajectory and Fate Models to Assess the Risk of Accidental Crude Oil Releases Along the Enbridge Line 3 Replacement Program Pipeline

Author(s):  
Matthew G. S. Horn ◽  
Jeremy M. Fontenault

The proposed Enbridge Line 3 Replacement Program would replace the aging pipeline from Hardisty, Alberta, Canada to Superior, Wisconsin, USA. For the Canadian route, an Ecological and Human Health Risk Assessment (EHHRA) was prepared for the National Energy Board (NEB) in Canada. In the United States, an Assessment of Accidental Releases (AAR) and the Supplemental Release Report were part of an Environmental Impact Statement (EIS) prepared for the Minnesota Public Utilities Commission (PUC) and Minnesota Department of Commerce, Energy Environmental Review and Analysis (DOC-EERA). Computational oil spill modeling was used to assess the predicted trajectory (movement), fate (behavior and weathering), and potential effects (impacts) associated with accidental releases of crude oil along the proposed pipeline. This modeling included the 2-dimensional OILMAPLand and 3-dimensional SIMAP models. A total of 64 hypothetical release scenarios were investigated to understand the range of potential trajectories, fates, and effects that may be possible from multiple product types (Bakken, Federated Crude, and Cold Lake Winter Blend), released at any location, under varying environmental conditions. Trajectory and fate modeling was used to predict the downstream movement and timing of oil, as well as the expected surface oil thickness, water column contamination, shoreline and sediment oiling, and proportion evaporated to the atmosphere. These results were then used to assess the potential environmental effects to demonstrate the variability of outcomes following a release under different release conditions.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2096-2109
Author(s):  
Linda Pilkey-Jarvis ◽  
Nhi Irwin

Abstract 2017-405 With the energy renaissance in the United States and the lack of inland pipeline distribution systems, increasingly railroads are transporting crude oil to coastal ports for refining and for further distribution over the water. In Washington State, rapidly changing modes of crude oil transportation, shifting away from vessel and towards rail delivery, resulted in a regulatory requirement for rail operators to develop state approved oil spill contingency plans. Oil spill planning for railroads can be complex, for instance, planning for spills in all types of terrains, environments and habitats, as railroads cross both inland and marine waters. Washington State regulations for railroad contingency plans have been developed in response to changes in oil movement and this paper presents lessons learned from that endeavor. During the rule process, a unit train carrying Bakken crude oil derailed in the Columbia River Gorge, providing an opportunity to draw those lessons into the final rules as adopted. This paper describes the State’s approach to working with large and small rail operators and concerned citizens, and shares the lessons that address the obstacles and opportunities unique to complex railroad oil spill planning.



2001 ◽  
Vol 2001 (2) ◽  
pp. 1467-1469
Author(s):  
Stéphane Grenon ◽  
Vincent Jarry ◽  
Darcy Longpré ◽  
Kenneth Lee ◽  
Albert D. Venosa

ABSTRACT The St. Lawrence River, situated between Canada and the United States, provides a major transport route in North America for the transport of millions of tons of crude oil, condensates, and refined products each year. In addition, as one of the largest rivers in the world, it is of major ecological significance. For example, over 55,000 hectares of wetlands are found along the St. Lawrence alone. These areas provide habitat for wildlife, the nurseries for fisheries, and control coastal erosion are highly vulnerable to oil spills. Furthermore, as traditional oil spill cleanup methods may be ineffective or cause more damage, emergency responders are considering less intrusive methods such as biorestoration as operational countermeasures. A biorestoration experiment was designed to measure the effectiveness of this method in the St. Lawrence River. To conduct this experiment, 1,200 liters of crude oil were to be spilled in a controlled manner over an experimental zone of 750 m2 in a marsh area. To obtain regulatory approvals from governmental agencies, environmental groups and, more importantly, to avoid the “not in my backyard” protests from the local communities, site selection, emergency planning, contingency measures, and especially community meetings, were all necessary steps towards the acceptance of the project. This controlled spill was done in June 1998 without any incident. Sampling of the experimental site will be completed in the fall of 2000. This paper aims to provide insights on the steps needed to gain acceptance from concerned citizens for the conduct of a controlled oil spill experiment.



2018 ◽  
Author(s):  
Kelsie L. Kelly ◽  
Caz M. Taylor

Blue crabs, Callinectes sapidus Rathbun, 1896, are ubiquitous along the Atlantic and Gulf coasts of the United States. These organisms play an integral role in the ecosystems of the Gulf of Mexico (GOM), where not only are they a keystone species, but are also socioeconomically important. The survival of embryonated eggs is necessary to ensure adequate recruitment into the next generation. Because the 2010 Deepwater Horizon oil spill (DWH) occurred during the peak of the blue crab spawning season, the incident likely impacted blue crab embryos. In order to assess the effect of oil on embryonic growth and development, we collected embryonated eggs from seven different female blue crabs from the GOM throughout the spawning season and exposed them to an oil concentration of 500 ppb (the approximate concentration of oil at the surface water near the site of the Deepwater Horizon oil rig). Exposure to oil at this concentration caused a significantly larger proportion of prezoeae versus zoeae to hatch from embryonated eggs in experiments lasting longer than 4 days. Exposure to oil did not significantly affect overall survival or development rate. The prezoeal stage is a little-studied stage of blue crab development. Though it may or may not be a normal stage of development, this stage has been found to occur in suboptimal conditions and has lower survival than zoeal stages. The larger proportion of prezoeae following prolonged exposure to oil thus indicates that crude oil at concentrations likely to be experienced by crabs after the DWH spill negatively impacted the development of blue crab embryos. In addition to providing insight into the effects of the Deepwater Horizon oil spill, this study sheds light on embryonic development in blue crabs, a critical, but poorly investigated phase of this important species’ life cycle.



Author(s):  
Matthew Horn

ABSTRACT Oil spill trajectory and fate modeling and analyses were performed to support evaluation of the downstream movement, behavior, timing, and potential ecological and human health risks resulting from hypothetical releases of crude oil from the proposed Enbridge Line 3 Replacement Program. The investigation involved assessing multiple hypothetical pipeline releases into terrestrial and aquatic environments. The quantitative assessment of the three-dimensional movement (i.e. trajectory) and behavior (i.e. fate) of released oil used site-specific environmental and geographic conditions, including seasonal and hydrographic information. The main questions being addressed included: What is the expected spatial extent, timing, and magnitude of hydrocarbon contamination from an unmitigated release?How do changes in the release location and release volume affect the ultimate trajectory, fate, and number of potentially susceptible resources.How does the inclusion of modeled response options change predictions (i.e. unmitigated vs. response mitigated scenarios)? The 2-dimensional OILMAPLand and 3-dimensional SIMAP computational oil spill models were used to assess hypothetical crude oil release scenarios into the Mississippi River near Palisade, MN. Results were presented in an Environmental Impact Statement (EIS) and an Assessment of Accidental Releases (AAR) presented to the Minnesota Department of Commerce Energy Environmental Review and Analysis (MN DOC EERA) and the Pollution Control Administration (MN PCA) as both oral and written testimony. The findings demonstrated realistic predictions of containment and collection efficiencies following an accidental release and aided regulators in the decision-making process for the project.



2001 ◽  
Vol 2001 (1) ◽  
pp. 679-684 ◽  
Author(s):  
Gary S. Mauseth ◽  
Gregory E. Challenger

ABSTRACT In the past 5 years, there have been numerous cases of seafood harvest closures following oil spills in the United States. This paper examines seven oil spills and the methods and criteria used for closing fisheries and subsequently rescinding seafood harvesting restrictions. In examining these cases, each respective state has assumed the lead. In general, individual states often have little to no experience in dealing with reopening a fishery due to an oil spill. Concerns include health risk to consumers and tainting of product that could reach the market and a loss in market confidence. Key technical issues that are uniform throughout many of the cases examined are: variability of acceptable benzo[a]pyrene equivalents with each spill; a slow reopening process because of continued lack of national standards and criteria; a desire for each state to develop their own criteria which may or may not be based on prior experience of other states in other oil spills; expanded scope of sampling programs in space, magnitude, and duration despite the lack of findings of spill-related health risks to seafood in previous spills; continued scrutiny of non-hydrocarbon chemical contaminants in the spilled material; and non-oil spill related failures of either health or marketability criteria that often do not result in the continued closure of the fishery. Several recent cases have benefited from past experience and offer alternatives to previous fishery closure and reopening strategies. This report will compare and contrast many of the parameters required for reopening of fisheries, including human health risk variables, inclusion or exclusion of alkylated homologs of PAHs, benzo[a]pyrene (BAP) equivalents, and contaminants of concern.



1975 ◽  
Vol 1975 (1) ◽  
pp. 287-291
Author(s):  
Jules F. Mayer

ABSTRACT Estero Bay, California, located midway between San Francisco and Los Angeles, may be the site of the first deepwater terminal in the United States capable of handling tankers larger than 200,000 deadweight tons. The ships would be moored 2.6 miles from shore at a single point mooring (SPM). Crude oil would be transferred to the San Francisco Bay area by a 280-mile pipeline. One of the first questions asked by most permitting organizations is, what is the chance of an oil spill and how would you clean it up. The environmental studies for the project have addressed this question with particular attention to the prevention of spillage and, secondarily, to the cleanup equipment and organization required in the event that spillage should occur. Equal consideration is being given to the operational procedures, including use of owner-trained mooring masters. A plan for manpower organization and the pooling of people during an emergency has been developed.



2018 ◽  
Author(s):  
Kelsie L. Kelly ◽  
Caz M. Taylor

Blue crabs, Callinectes sapidus Rathbun, 1896, are ubiquitous along the Atlantic and Gulf coasts of the United States. These organisms play an integral role in the ecosystems of the Gulf of Mexico (GOM), where not only are they a keystone species, but are also socioeconomically important. The survival of embryonated eggs is necessary to ensure adequate recruitment into the next generation. Because the 2010 Deepwater Horizon oil spill (DWH) occurred during the peak of the blue crab spawning season, the incident likely impacted blue crab embryos. In order to assess the effect of oil on embryonic growth and development, we collected embryonated eggs from seven different female blue crabs from the GOM throughout the spawning season and exposed them to an oil concentration of 500 ppb (the approximate concentration of oil at the surface water near the site of the Deepwater Horizon oil rig). Exposure to oil at this concentration caused a significantly larger proportion of prezoeae versus zoeae to hatch from embryonated eggs in experiments lasting longer than 4 days. Exposure to oil did not significantly affect overall survival or development rate. The prezoeal stage is a little-studied stage of blue crab development. Though it may or may not be a normal stage of development, this stage has been found to occur in suboptimal conditions and has lower survival than zoeal stages. The larger proportion of prezoeae following prolonged exposure to oil thus indicates that crude oil at concentrations likely to be experienced by crabs after the DWH spill negatively impacted the development of blue crab embryos. In addition to providing insight into the effects of the Deepwater Horizon oil spill, this study sheds light on embryonic development in blue crabs, a critical, but poorly investigated phase of this important species’ life cycle.



2007 ◽  
Vol 30 (4) ◽  
pp. 47
Author(s):  
P. Pace-Asciak ◽  
T. Gelfand

Medical students depend on illustration to learn anatomical facts and details that may be too subtle for the written or spoken word. For surgical disciplines, learners rely on tools such as language, 2-dimensional illustrations, and 3-dimensional models to pass on important concepts. Although a photograph can convey factual information, illustration can highlight and educate the pertinent details for understanding surgical procedures, neurovascular structures, and the pathological disease processes. In order to understand the current role of medical illustration in education, one needs to look to the past to see how art has helped solve communication dilemmas when learning medicine. This paper focuses on Max Brodel (1870-1941), a German-trained artist who eventually immigrated to the United States to pursue his career as a medical illustrator. Shortly after his arrival in Baltimore, Brodel made significant contributions to medical illustration in Gynecology at John Hopkins University, and eventually in other fields of medicine such as Urology and Otolaryngology. Brodel is recognized as one of America’s most distinguished medical illustrators for creating innovative artistic techniques and founding the profession of medical illustration. Today, animated computer based art is synergistically used with medical illustration to educate students about anatomy. Some of the changes that have occurred with the advancement of computer technology will be highlighted and compared to a century ago, when illustrations were used for teaching anatomy due to the scarcity of cadavers. Schultheiss D, Udo J. Max Brodel (1870-1941) and Howard A.Kelly (1858-1943) – Urogynecology and the birth of modern medical illustration. European Journal of Obstetrics & gynecology and Reproductive Biology 1999; 86:113-115. Crosby C. Max Brodel: the man who put art into medicine. New York: Springer-Verlag, 1991. Papel ID. Max Brodel’s contributions to otolaryngology – Head and Neck surgery. The American Journal of Otology 1986; 7(6):460-469.



Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 233
Author(s):  
Widuramina Amarasinghe ◽  
Ingebret Fjelde ◽  
Nils Giske ◽  
Ying Guo

During CO2 storage, CO2 plume mixes with the water and oil present at the reservoir, initiated by diffusion followed by a density gradient that leads to a convective flow. Studies are available where CO2 convective mixing have been studied in water phase but limited in oil phase. This study was conducted to reach this gap, and experiments were conducted in a vertically packed 3-dimensional column with oil-saturated unconsolidated porous media at 100 bar and 50 °C (representative of reservoir pressure and temperature conditions). N-Decane and crude oil were used as oils, and glass beads as porous media. A bromothymol blue water solution-filled sapphire cell connected at the bottom of the column was used to monitor the CO2 breakthrough. With the increase of the Rayleigh number, the CO2 transport rate in n-decane was found to increase as a function of a second order polynomial. Ra number vs. dimensionless time τ had a power relationship in the form of Ra = c×τ−n. The overall pressure decay was faster in n-decane compared to crude oil for similar permeability (4 D), and the crude oil had a breakthrough time three times slower than in n-decane. The results were compared with similar experiments that have been carried out using water.



Sign in / Sign up

Export Citation Format

Share Document