scholarly journals Oil Spill Modeling for the Enbridge Line 3 Replacement Program with Response for Planning, Preparedness, and Environmental Purposes

Author(s):  
Matthew Horn

ABSTRACT Oil spill trajectory and fate modeling and analyses were performed to support evaluation of the downstream movement, behavior, timing, and potential ecological and human health risks resulting from hypothetical releases of crude oil from the proposed Enbridge Line 3 Replacement Program. The investigation involved assessing multiple hypothetical pipeline releases into terrestrial and aquatic environments. The quantitative assessment of the three-dimensional movement (i.e. trajectory) and behavior (i.e. fate) of released oil used site-specific environmental and geographic conditions, including seasonal and hydrographic information. The main questions being addressed included: What is the expected spatial extent, timing, and magnitude of hydrocarbon contamination from an unmitigated release?How do changes in the release location and release volume affect the ultimate trajectory, fate, and number of potentially susceptible resources.How does the inclusion of modeled response options change predictions (i.e. unmitigated vs. response mitigated scenarios)? The 2-dimensional OILMAPLand and 3-dimensional SIMAP computational oil spill models were used to assess hypothetical crude oil release scenarios into the Mississippi River near Palisade, MN. Results were presented in an Environmental Impact Statement (EIS) and an Assessment of Accidental Releases (AAR) presented to the Minnesota Department of Commerce Energy Environmental Review and Analysis (MN DOC EERA) and the Pollution Control Administration (MN PCA) as both oral and written testimony. The findings demonstrated realistic predictions of containment and collection efficiencies following an accidental release and aided regulators in the decision-making process for the project.

Author(s):  
Matthew Horn

ABSTRACT Oil spill trajectory and fate modeling was used in inland response Full Scale Exercises including the Enbridge Des Plains River (fall 2018) and Wisconsin River (fall 2019). The Spill Impact Model Application Package (SIMAP) was used to predict the three-dimensional movement (i.e. trajectory) and behavior (i.e. fate) of a hypothetical release of oil using site-specific environmental and geographic conditions (including seasonal and hydrographic information) for the date of the exercise. The RPS OILMAPLand model was also used to predict the two-dimensional movement and behavior of the oil over the land surface, before it was predicted to enter the waterway. The oil spill modeling evaluated the spatial extent, timing, and magnitude of hydrocarbon contamination at downstream locations including thicknesses of floating surface oil and the mass of oil on shorelines and sediments. The assessments included the potential for released oil to move over the land surface, before entering the waterway, as well as becoming entrained in the water column as a result of surface floating oil passing over local features such as locks and dams. The results were presented at two separate exercise planning session and the full scale exercise as static images, GIS shape files, and videos. Results were also included in the COP for the exercise itself, with predicted results provided at hourly intervals for several days.


Author(s):  
Matthew G. S. Horn ◽  
Jeremy M. Fontenault

The proposed Enbridge Line 3 Replacement Program would replace the aging pipeline from Hardisty, Alberta, Canada to Superior, Wisconsin, USA. For the Canadian route, an Ecological and Human Health Risk Assessment (EHHRA) was prepared for the National Energy Board (NEB) in Canada. In the United States, an Assessment of Accidental Releases (AAR) and the Supplemental Release Report were part of an Environmental Impact Statement (EIS) prepared for the Minnesota Public Utilities Commission (PUC) and Minnesota Department of Commerce, Energy Environmental Review and Analysis (DOC-EERA). Computational oil spill modeling was used to assess the predicted trajectory (movement), fate (behavior and weathering), and potential effects (impacts) associated with accidental releases of crude oil along the proposed pipeline. This modeling included the 2-dimensional OILMAPLand and 3-dimensional SIMAP models. A total of 64 hypothetical release scenarios were investigated to understand the range of potential trajectories, fates, and effects that may be possible from multiple product types (Bakken, Federated Crude, and Cold Lake Winter Blend), released at any location, under varying environmental conditions. Trajectory and fate modeling was used to predict the downstream movement and timing of oil, as well as the expected surface oil thickness, water column contamination, shoreline and sediment oiling, and proportion evaporated to the atmosphere. These results were then used to assess the potential environmental effects to demonstrate the variability of outcomes following a release under different release conditions.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 233
Author(s):  
Widuramina Amarasinghe ◽  
Ingebret Fjelde ◽  
Nils Giske ◽  
Ying Guo

During CO2 storage, CO2 plume mixes with the water and oil present at the reservoir, initiated by diffusion followed by a density gradient that leads to a convective flow. Studies are available where CO2 convective mixing have been studied in water phase but limited in oil phase. This study was conducted to reach this gap, and experiments were conducted in a vertically packed 3-dimensional column with oil-saturated unconsolidated porous media at 100 bar and 50 °C (representative of reservoir pressure and temperature conditions). N-Decane and crude oil were used as oils, and glass beads as porous media. A bromothymol blue water solution-filled sapphire cell connected at the bottom of the column was used to monitor the CO2 breakthrough. With the increase of the Rayleigh number, the CO2 transport rate in n-decane was found to increase as a function of a second order polynomial. Ra number vs. dimensionless time τ had a power relationship in the form of Ra = c×τ−n. The overall pressure decay was faster in n-decane compared to crude oil for similar permeability (4 D), and the crude oil had a breakthrough time three times slower than in n-decane. The results were compared with similar experiments that have been carried out using water.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


Author(s):  
So Young Joo ◽  
Seung Yeol Lee ◽  
Yoon Soo Cho ◽  
Sangho Yi ◽  
Cheong Hoon Seo

Abstract Hands are the part of the body that are most commonly involved in burns, and the main complications are finger joint contractures and nerve injuries. Hypertrophic scarring cannot be avoided despite early management of acute hand burn injuries, and some patients may need application of an exoskeleton robot to restore hand function. To do this, it is essential to individualize the customization of the robot for each patient. Three-dimensional (3D) technology, which is widely used in the field of implants, anatomical models, and tissue fabrication, makes this goal achievable. Therefore, this report is a study on the usefulness of an exoskeleton robot using 3D technology for patients who lost bilateral hand function due to burn injury. Our subject was a 45-year-old man with upper limb dysfunction of 560 days after a flame and chemical burn injury, with resultant impairment of manual physical abilities. After wearing an exoskeleton robot made using 3D printing technology, he could handle objects effectively and satisfactorily. This innovative approach provided considerable advantages in terms of customization of size and reduction in manufacturing time and costs, thereby showing great potential for use in patients with hand dysfunction after burn injury.


Author(s):  
Emilio D’Ugo ◽  
Milena Bruno ◽  
Arghya Mukherjee ◽  
Dhrubajyoti Chattopadhyay ◽  
Roberto Giuseppetti ◽  
...  

AbstractMicrobiomes of freshwater basins intended for human use remain poorly studied, with very little known about the microbial response to in situ oil spills. Lake Pertusillo is an artificial freshwater reservoir in Basilicata, Italy, and serves as the primary source of drinking water for more than one and a half million people in the region. Notably, it is located in close proximity to one of the largest oil extraction plants in Europe. The lake suffered a major oil spill in 2017, where approximately 400 tons of crude oil spilled into the lake; importantly, the pollution event provided a rare opportunity to study how the lacustrine microbiome responds to petroleum hydrocarbon contamination. Water samples were collected from Lake Pertusillo 10 months prior to and 3 months after the accident. The presence of hydrocarbons was verified and the taxonomic and functional aspects of the lake microbiome were assessed. The analysis revealed specialized successional patterns of lake microbial communities that were potentially capable of degrading complex, recalcitrant hydrocarbons, including aromatic, chloroaromatic, nitroaromatic, and sulfur containing aromatic hydrocarbons. Our findings indicated that changes in the freshwater microbial community were associated with the oil pollution event, where microbial patterns identified in the lacustrine microbiome 3 months after the oil spill were representative of its hydrocarbonoclastic potential and may serve as effective proxies for lacustrine oil pollution.


Sign in / Sign up

Export Citation Format

Share Document