A High Sensitivity Piezoresistive Pressure Sensor

Author(s):  
Ahsan Mian ◽  
Jesse Law

In the current investigation, the piezoresistive effect in a van der Pauw (VDP) stress sensor subjected to biaxial stress was considered. The VDP resistance equations were combined with the silicon piezoresistivity equations to yield relations for the change in resistance of a VDP sensor in terms of the applied state of stress. Then the sensitivity of the VDP sensor to biaxial stress was determined analytically and simulated numerically. The biaxial stress states considered were those for a circular diaphragm under pressure. The numerical calculations involved the use of anisotropic conduction based simulations, implemented in MATLAB using the finite difference technique. The VDP sensitivities to biaxial stress were compared to the sensitivity for the conventional piezoresistive stress sensor. It is observed that the theoretical (based on analytical and numerical results)pressure sensitivity of the new VDP sensor is about three times greater than the conventional counterpart. Analysis was performed for both p-type and n-type Silicon. It is determined that the angle of the VDP sensor with respect to the Silicon crystallographic axes can and should be optimized, depending on Silicon dopant, and the optimum orientation angles are determined.

Author(s):  
R. Cassel ◽  
A. Mishty ◽  
A. Mian

In this paper, we presented is a four-terminal piezoresistive sensor commonly referred to as a van der Pauw (VDP) structure for its application to MEMS pressure sensing. In a recent study, our team has determined the relation between the biaxial stress state and the piezoresistive response of a VDP structure by combining the VDP resistance equations with the equations governing silicon piezoresistivity and has proposed a new piezoresistive pressure sensor. It was observed that the sensitivity of the VDP sensor is over three times higher than the conventional filament type Wheatstone bridge resistor. To check our theoretical findings, we fabricated several (100) silicon diaphragms with both the VDP sensors and filament resistor sensors on the same wafer so both the sensor elements have same doping concentration. The diaphragms were subjected to known pressures, and the pressure sensitivities of both types of sensors were measured using an in-house built calibration setup. It was found that the VDP devices had a linear response to pressure as expected, and were more sensitive than the resistor sensors. Also, the VDP sensors provided a number of additional advantages, such as its size independent sensitivity and simple fabrication steps due to its simple geometry.


2021 ◽  
Vol 11 (2) ◽  
pp. 1629-1640
Author(s):  
Kavitha K

This paper mainly focuses on to get high displacement from polymer based piezoresistive cantilever for MEMS/NEMS pressure sensor applications. The displacement has been analyzed and compared with three different cantilever using PDMS (Poly dimethyl siloxane) and PMMA (Poly methyl methacrylate) materials. The p-type silicon piezoresistors connected the form based on wheat stone bridge to get high sensible pressure sensor with respect to low response. An according to get high displacement, obviously the other performance of parameters such as stress, strain gets high range. So, this analyzed cantilever structure used to design a pressure sensor with high sensitivity. The design and simulation are done by using COMSOL Multiphysics.


2013 ◽  
Vol 771 ◽  
pp. 159-162
Author(s):  
Li Feng Qi ◽  
Zhi Min Liu ◽  
Xing Ye Xu ◽  
Guan Zhong Chen ◽  
Xue Qing

The relative research of low range and high anti-overload piezoresistive pressure sensor is carried out in this paper and a new kind of sensor chip structure, the double ends-four beam structure, is proposed. Trough the analysis, the sensor chip structure designed in this paper has high sensitivity and linearity. The chip structure is specially suit for the micro-pressure sensor. The theoretical analysis and finite element analysis is taken in this paper, which provide important scientific basis for the pressure sensor development.


2021 ◽  
Author(s):  
Mikhail

High sensitivity MEMS pressure sensor chip for different ranges (1 to 60 kPa) utilizing the novel electrical circuit of piezosensitive differential amplifier with negative feedback loop (PDA-NFL) is developed. Pressure sensor chip PDA-NFL utilizes two bipolar-junction transistors (BJT) with vertical n-p-n type structure (V-NPN) and eight piezoresistors (p-type). Both theoretical model of sensor response to pressure and temperature and experimental data are presented. Data confirms the applicability of theoretical model. Introduction of the amplifier allows for decreasing chip size while keeping the same sensitivity as a chip with classic Wheatstone bridge circuit.


2008 ◽  
Vol 587-588 ◽  
pp. 283-287
Author(s):  
J. Díaz-Reyes ◽  
Miguel Galvan-Arellano ◽  
R. Peña-Sierra

This work presents the optical and structural characterization of p-type GaAs epilayers. The gallium precursor was the organometallic compound trimethylgallium (TMG). The influence of the doping in the optical and structural properties of the GaAs layers has been studied by photoluminescence (PL) and Raman dispersion measurements. The range of analyzed hole concentration was from 1017 to 1019 cm-3 as measured by the Hall-van der Pauw method. For carrying out doping p-type, it was necessary to modify the hydrogen activity in the growth atmosphere with the control of a H2+N2 mixture, which was used like transporting gas. The photoluminescence response and Raman dispersion of the layers are strongly dependence of the growth temperature, which were investigated based on the hole concentration. The PL response of the layers shows two radiative transitions, band-to-band and band-to-C-acceptor at low hole concentration and disappears at high concentrations. Raman scattering spectra show LO mode at 270 cm-1 for low doped samples and a LO-like mode at 290 cm-1 produced by the phonon-holeplasmon coupling for high doped samples.


RSC Advances ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 3009-3013 ◽  
Author(s):  
Tuan-Khoa Nguyen ◽  
Hoang-Phuong Phan ◽  
Jisheng Han ◽  
Toan Dinh ◽  
Abu Riduan Md Foisal ◽  
...  

This paper presents for the first time a p-type 4H silicon carbide (4H-SiC) van der Pauw strain sensor by utilizing the strain induced effect in four-terminal devices.


Sign in / Sign up

Export Citation Format

Share Document