Development of a New Vibrator for Elliptical Vibration Texturing

Author(s):  
Ping Guo ◽  
Kornel F. Ehmann

Inspired by the idea of vibro-mechanical texturing, which adds a tertiary motion to the tool tip in the conventional turning process, and the elliptical vibration cutting process, which adds vibrations both in the cutting direction and feed direction, this paper proposes a new design for an ultrasonic vibrator for the elliptical vibration texturing process. The elliptical locus lies in the plane that is defined by the cutting and the radial directions. The device could be easily adapted for elliptical cutting applications by changing the orientation of the tool tip. The vibrator works in the resonant mode, with in-phase and anti-phase vibration modes at a nearly identical natural frequency. Simulations and experiments have been carried out to study and verify different vibration modes of the system. Different design parameters have been analyzed to control the elliptical trajectory of the tool tip. A set of preliminary experimental result of elliptical vibration texturing is also provided.

2011 ◽  
Vol 467-469 ◽  
pp. 236-240 ◽  
Author(s):  
Wen Li ◽  
De Yuan Zhang

Based on analysis of the micro-surface and kinematical formulas of elliptical vibration cutting(EVC), the paper presents that frequency and amplitude of vibration parameter affect surface roughness, forming accuracy and machining efficiency of weak rigidity workpiece: increase vibration frequency are result in lower vibration cutting duty cycle , lower cutting force, advancer critical speed, so advance forming accuracy and machining efficiency; decrease amplitude are result in reduce the height of vibration ripples in cutting direction , so improve surface roughness. Experiences of cutting the weak rigidity workpiece by the designed double bending hybrid vibration high transducer, verified that the high frequency elliptical vibration cutting are proved more conducive to machining weak rigidity workpiece.


2011 ◽  
Vol 314-316 ◽  
pp. 1851-1856 ◽  
Author(s):  
Xin Quan Zhang ◽  
A. Senthil Kumar ◽  
Mustafizur Rahman

The elliptical vibration cutting (EVC) technique has been found to be a promising technique for ultraprecision machining of various materials. Researchers have proved that the EVC technique prevails over both conventional cutting and 1D vibration cutting techniques in most aspects in terms of cutting performances. However, during the EVC process, vibration marks or cusps are generated by the elliptical vibration locus and can result in an increase in the overall roughness of machined surface, which is undesirable for achieving high-quality mirror surface. Although researchers have developed a calculation method for the height of the cusps, only the effects of vibration frequency on surface generation were studied, and the effects of the other vibration and machining parameters have not been investigated in detail by previous researchers. Hence, in the present study, in order to deeply understand surface generation process along nominal cutting direction under the EVC technique, which is critical for its performance improvement and application, an experimental study comprising a series of grooving tests was carried out. The effects of nominal cutting speed on the surface generation at two different thrust-directional vibration amplitudes are investigated. Analysis is given for the comparison between the theoretical and experimental roughness values, showing that there exists a critical nominal cutting speed, below which the measured roughness value is quite small and the vibration marks are almost undetectable.


2010 ◽  
Vol 4 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Saeid Amini ◽  
◽  
Eiji Shamoto ◽  
Norikazu Suzuki ◽  
Mohammad Javad Nategh ◽  
...  

Processes of one-directional vibration cutting, elliptical vibration cutting and conventional cutting are modelled by using MSC-Marc FEM software in the present study. The vibration is assumed to be applied to a rigid cutting tool in the cutting direction for the one-directional vibration cutting and in the cutting and thrust directions for the elliptical vibration cutting. Then, the cutting forces and the stresses generated within the workpiece during the abovementioned processes are estimated by applying the developed FE model, and their cutting mechanics are discussed. Influence of various process parameters such as speed ratio, amplitudes and phase difference is subsequently investigated. The simulated results are also compared with some experimental data published in the literature.


Author(s):  
Dinh Nguyen ◽  
Phi-Ho Lee ◽  
Yang Guo ◽  
Kyung-Hee Park ◽  
Patrick Kwon

This paper evaluates the performances of dry, minimum quantity lubrication (MQL), and MQL with nanofluid conditions in turning of the most common titanium (Ti) alloy, Ti-6Al-4 V, in a solution treated and aged (STA) microstructure. In particular, the nanofluid evaluated here is vegetable (rapeseed) oil mixed with small concentrations of exfoliated graphite nanoplatelets (xGnPs). This paper focuses on turning process that imposes a challenging condition to apply the oil or nanofluid droplets directly onto the tribological surfaces of a cutting tool due to the uninterrupted engagement between tool and work material during cutting. A series of turning experiments was conducted with uncoated carbide inserts, while measuring the cutting forces with a dynamometer under the dry, MQL and MQL with nanofluid conditions supplying oil droplets externally from our MQL device. The inserts are retrieved intermittently to measure the progress of flank and crater wear using a confocal microscopy. This preliminary experimental result shows that MQL and in particular MQL with the nanofluid significantly improve the machinability of Ti alloys even in turning process. However, to attain the best performance, the MQL conditions such as nozzle orientation and the concentration of xGnP must be optimized.


2014 ◽  
Vol 621 ◽  
pp. 153-157
Author(s):  
Lin Hua Hu ◽  
Ming Zhou ◽  
Yu Liang Zhang

Due to intermitted cut characteristics, ultrasonic elliptical vibration cutting offers many benefits e.g. reducing tool force, improving surface finish and extending tool life. This paper presents the model-based development of an ultrasonic elliptical vibration cutting device with 1st resonant mode of longitudinal vibration and 3 rd resonant mode of bending vibration. The development of the device was assisted with the finite element program ANSYS. Based on theoretical and experimental studies, the requirements of the device are estimated. The maximum displacement amplitude of the ultrasonic elliptical vibration cutting device is 13.1μm and 8.3μm for bending vibration and longitudinal vibration respectively at an exciting voltage of 400Vp-p.


1996 ◽  
Vol 62 (8) ◽  
pp. 1127-1131 ◽  
Author(s):  
Eiji SHAMOTO ◽  
Yoshiyuki MORIMOTO ◽  
Toshimichi MORIWAKI

2014 ◽  
Vol 490-491 ◽  
pp. 600-606
Author(s):  
Jie Qiong Lin ◽  
Jin Guo Han ◽  
Dan Jing ◽  
Xian Jing

Elliptical vibration cutting (EVC) process and three dimensional cutting surfaces are analyzed in this paper to understand the formation of surface topography. The model of EVC surface topography is established based on curved surface remove function under the assumption that the tool edge is sharp enough. And simulation analysis of surface topography is conducted with different feed offset ratios. Results indicate that RMS change with feed offset ratios λ. The range of RMS is larger when feed offset ratio ranges from both 0 to 0.4 and 0.6 to 1, while the range is smaller when feed offset ratio changes from 0.4 to 0.6. Whats more, RMS reaches the minimum when feed offset ratio is 0.5. The present research provides some references for reducing the height of vibration ripples and improving EVC surface quality.


Sign in / Sign up

Export Citation Format

Share Document