Intelligent Modeling and Optimization of Material Removal Rate in Electric Discharge Diamond Grinding

Author(s):  
Pankaj Kumar Shrivastava ◽  
Avanish Kumar Dubey

Metal matrix composites (MMCs) have wide applications in modern manufacturing industries due to their specific and improved technological characteristics such as high strength to weight ratio, high hardness, high thermal, corrosion and wear resistances. Such characteristics are highly demanded in automobile, aircraft and space research organizations. Shaping of MMCs has been a big challenge for manufacturing industries due to their superior mechanical properties and the peculiar microstructure composed of different phases in MMCs poses machining challenges. Unconventional machining methods have become an alternative to give desired shapes with intricate profiles and stringent design requirements. The aim of present research is to investigate the machining performance of copper-iron-carbide MMC using hybrid machining process, electric discharge diamond grinding (EDDG). A hybrid approach of neural network and genetic algorithm has been used to develop the intelligent model for material removal rate (MRR) and subsequent optimization with the experimental data obtained by scientifically designed experimentation.

Author(s):  
Yash Pachaury ◽  
Puneet Tandon

In the present study, an attempt has been made to model the electric discharge machining process using the numerical simulation technique. Realistic parameters are added in the model such as variable fraction of heat going to the electrodes, and variation in the plasma flushing efficiency with the process parameters. Gaussian distributed heat flux is applied at the spark location and the two-dimensional heat conduction equation is solved with the help of finite element analysis technique to determine the temperature distribution within the two-dimensional process continuum, using averaged thermo-physical properties of the work material. Melting isotherms are determined and the material removed during a single discharge is obtained from it. Material removal rate is determined using a regression model for the plasma flushing efficiency. Experimental validation is made with the help of highly precise AGIE SIT experimental data. The material removal rate is also compared with state of the art research of other researchers. It has been observed that, at low value of the discharge energies, the proposed model is able to predict the experimental material removal rate better than that of the model proposed by other researchers. However, as the discharge energy increases, the accuracy of prediction decreases. The model can be used for achieving process parameter optimization hence saving both the costs and large lead times associated with determining optimized parameters experimentally.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


2017 ◽  
Vol 107 (09) ◽  
pp. 674-680
Author(s):  
E. Prof. Abele ◽  
C. Hasenfratz ◽  
C. Praetzas ◽  
G. M. Schüler ◽  
C. Stark ◽  
...  

Die Herstellung von Verdichterscheiben stellt hohe Ansprüche an die Fertigungstechnik. Neue, schwer zu zerspanende Materialien und Integralkonstruktionen erzeugen eine hohe Komplexität bei der Ausführung. Das Projekt „SchwerSpan“ stellt sich dieser Herausforderung und entwickelt einen Prozess zur Schruppfräsbearbeitung von Verdichterscheiben. Ziel des Projekts ist eine Reduktion der Werkzeugkosten bei erhöhtem Zeitspanvolumen.   The production of compressor disks places high demands on the manufacturing technology. A very complex task is created by new difficult-to-cut materials and integral components. The project “SchwerSpan” is taking on this task by developing a machining process for rough milling in the production of compressor disks. The aim of the process is to reduce the tool costs by increasing material removal rate.


2019 ◽  
Vol 814 ◽  
pp. 127-131
Author(s):  
Patittar Nakwong ◽  
Apiwat Muttamara

Wire electrical discharge machine (WEDM) is non-conventional machining process. It can be used for hard cutting material. The study has been presented the combining WEDM with an ultrasonic machine (USM) with brass and tungsten were used as a wire electrode and workpiece respectively. The experiment was carried out with an ultrasonic transducer at 40, 80 kHz. The results were observed with the material removal rate (MRR) and surface roughness (Ra). This research introduced the method of USM setup and described the effected of vibration with the wire electrode on the displacement of amplitude. The result shows that the WEDM process with USM at 40 kHz can be more improved with the material removal rate and surface roughness than that of USM at 80 kHz. This can be explained that higher frequency affected to vibration displacement which makes lower amplitude.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Lei Guo ◽  
Xinrong Zhang ◽  
Shibin Chen ◽  
Jizhuang Hui

Ultraviolet-curable resin was introduced as a bonding agent into the fabrication process of precision abrasive machining tools in this study, aiming to deliver a rapid, flexible, economical, and environment-friendly additive manufacturing process to replace the hot press and sintering process with thermal-curable resin. A laboratory manufacturing process was established to develop an ultraviolet-curable resin bond diamond lapping plate, the machining performance of which on the ceramic workpiece was examined through a series of comparative experiments with slurry-based iron plate lapping. The machined surface roughness and weight loss of the workpieces were periodically recorded to evaluate the surface finish quality and the material removal rate. The promising results in terms of a 12% improvement in surface roughness and 25% reduction in material removal rate were obtained from the ultraviolet-curable resin plate-involved lapping process. A summarized hypothesis was drawn to describe the dynamically-balanced state of the hybrid precision abrasive machining process integrated both the two-body and three-body abrasion mode.


Sign in / Sign up

Export Citation Format

Share Document