Calibration and Characterization of a Low-Cost Wireless Sensor for Applications in CNC End Milling
This paper describes recent research progress at the University of New Hampshire in the area of smart machining systems. Central to creating a smart machining system is the challenge of collecting detailed information about the milling process at the tool tip. This paper discusses the design, static calibration, dynamic characterization, and implementation of a low-cost wireless force sensor for end-milling. The sensor is observed to accurately measure force when most of the cutting power is band-limited below the sensor’s natural frequency. Sensor geometry constrains the milling application to a single tooth cutter; while this constraint is impractical for industrial applications, our sensor is shown to provide useful information in a laboratory setting.