Binder Jetting Additive Manufacturing of Metals: A Literature Review

Author(s):  
Ming Li ◽  
Wenchao Du ◽  
Alaa Elwany ◽  
Zhijian Pei ◽  
Chao Ma

Abstract Binder jetting, also known as 3D printing, is an additive manufacturing (AM) technology utilizing a liquid-based binding agent to selectively join the material in a powder bed. It is capable of manufacturing complex-shaped parts with a variety of materials. This paper provides an overview of binder jetting of metals with a discussion about the knowledge gaps and research opportunities. The review deals with two parameter categories in terms of the material and process and their impacts. The achieved density, dimensional accuracy, and mechanical strength are summarized and analyzed. Further in-depth consideration of densification is discussed corresponding to various attributes of the packing, printing, and sintering behaviors. Though binder jetting has attracted increasing attention in the past several years, this fabrication process is not well studied. The understanding of powder spreading process and binder-powder interaction is crucial to the development of binder jetting but insufficient. In addition, the lack of investigation on the mechanical behavior of binder jetting metal part restricts the actualization of its wide-range applications.

Author(s):  
Guanxiong Miao ◽  
Wenchao Du ◽  
Zhijian Pei ◽  
Chao Ma

Abstract Binder jetting additive manufacturing is a promising way to process ceramic materials which are hard to be manufactured into complex shapes using conventional methods. However, the application of binder jetting is limited by the relatively low density of manufactured parts. Powder bed forming process is a critical step that determines the powder bed density and consequently the part density. Thus, investigating and understanding the power spreading process is necessary to improve the part density. A numerical model is developed to predict the powder bed density under different spreading conditions using the discrete element method (DEM). The predicted DEM results are compared with the prediction of an analytical model. The results show that under different layer thicknesses (50 μm, 70 μm, 100 μm) and roller diameters (12 mm, 14 mm, and 16 mm), the predicted maximum powder bed density by these two models has nearly the same value and the predicted maximum packing stress has the same trend.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3895 ◽  
Author(s):  
Abbas Razavykia ◽  
Eugenio Brusa ◽  
Cristiana Delprete ◽  
Reza Yavari

Additive Manufacturing (AM) processes enable their deployment in broad applications from aerospace to art, design, and architecture. Part quality and performance are the main concerns during AM processes execution that the achievement of adequate characteristics can be guaranteed, considering a wide range of influencing factors, such as process parameters, material, environment, measurement, and operators training. Investigating the effects of not only the influential AM processes variables but also their interactions and coupled impacts are essential to process optimization which requires huge efforts to be made. Therefore, numerical simulation can be an effective tool that facilities the evaluation of the AM processes principles. Selective Laser Melting (SLM) is a widespread Powder Bed Fusion (PBF) AM process that due to its superior advantages, such as capability to print complex and highly customized components, which leads to an increasing attention paid by industries and academia. Temperature distribution and melt pool dynamics have paramount importance to be well simulated and correlated by part quality in terms of surface finish, induced residual stress and microstructure evolution during SLM. Summarizing numerical simulations of SLM in this survey is pointed out as one important research perspective as well as exploring the contribution of adopted approaches and practices. This review survey has been organized to give an overview of AM processes such as extrusion, photopolymerization, material jetting, laminated object manufacturing, and powder bed fusion. And in particular is targeted to discuss the conducted numerical simulation of SLM to illustrate a uniform picture of existing nonproprietary approaches to predict the heat transfer, melt pool behavior, microstructure and residual stresses analysis.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1090
Author(s):  
P. Rodríguez-González ◽  
P. E. Robles Valero ◽  
A. I. Fernández-Abia ◽  
M. A. Castro-Sastre ◽  
J. Barreiro García

This research shows the feasibility of the additive manufacturing technique (AM), Binder Jetting (BJ), for the production of shell moulds, which are filled by vacuum suction in the field of aluminium parts production. In addition, this study compares the gravity pouring technique and highlights the advantages of using vacuum techniques in AM moulds. A numerical simulation was carried out to study the behaviour of the liquid metal inside the moulds and the cooling rate of parts was analysed. The results show that in the gravity-pouring mould, the velocity in the gate causes moderate turbulence with small waves. However, vacuum suction keeps the velocity constant by eliminating waves and the filling process is homogeneous. Regarding dimensional accuracy, the staircase effect on the surface of the 3D moulds was the most critical aspect. The vacuum provides very homogeneous values of roughness across the entire surface of the part. Similarly, 3D scanning of castings revealed more accurate dimensions thanks to the help of vacuum forces. Finally, the microstructure of the cross section of the moulded parts shows that the porosity decreases with the vacuum filled. In both cases, the origin of the pores corresponds to gas entrapment and shrinkage during the filling process, the binder vaporization and nucleation points creation, leading to pores by shrinkage, gas entrapment or a mixture of both. This is the first study that uses vacuum filling techniques in moulds created by BJ, demonstrating the feasibility and advantages of AM using vacuum techniques, as an alternative to traditional casting.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Mika Salmi

Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed.


Author(s):  
Andreas Schroeffer ◽  
Thomas Maciuga ◽  
Konstantin Struebig ◽  
Tim C. Lueth

Abstract The claim in additive manufacturing (AM) changes from simply producing prototypes as show objects to the fabrication of final parts and products in small volume batches. Thereby the focus is on freedom of material, dimensional accuracy and mechanical component properties. A novel extrusion-based AM technology has been developed focusing on these issues. The working principle is to form spheres from a thermoplastic polymer melt and build parts by single droplets. The material preprocessing is similar to the injection molding technology and enables a wide range of different thermoplastic polymers as build materials. With the droplet-based working principle high mechanical component properties and dimensional accuracy can be reached compared to similar processes. Further improvements to the process need a detailed knowledge of the physical effects during the build process. The temperature distribution during the manufacturing process determines at which temperature material is fused and how solidification takes place and shrinkage can occur or is suppressed. Thus, it has a significant influence on the mechanical properties and warpage effects of produced parts. In this work a thermal model is presented that describes the heat transfer during the build process. The necessary input data are the material properties and a print job description including the part geometry and building strategy. The basic idea is to simulate each single droplet deposition by applying a dynamic Finite Element Method. All relevant heat transfer effects are analyzed and represented in the model. The model was validated with measurements using a thermal imaging camera. Several measurements were performed during the build process and compared to the simulation results. A high accuracy could be reached with an average model error of about 4° Celsius and a maximal error of 10° Celsius.


Author(s):  
Young Sik Pyun ◽  
Ruslan Karimbaev ◽  
Seimi Choi ◽  
Jun Suek Ro ◽  
Choong Ho Sanseong ◽  
...  

Abstract Additive Manufacturing (AM) which is also known as metal 3D printing technique is one of the promising manufacturing processes due to the capability to process a complex geometry component. This is implemented in wide range of applications in various industries such as automotive, aerospace, power plants, etc. The aging nuclear power plant components and the obsolescence of those components has become a concern in this industry, and AM has come as an alternative solution for this matter. The Board on Pressure and Technology Codes and Standards (BPTCS) and Board on Nuclear Codes and Standards (BNCS) Special Committees started to study the application of Powder Bed Fusion (PBF) technique for pressure retaining equipment made from UNS S31603. Also, later Korean International Working Group (KIWG) was also started a Task Group on Additive Manufacturing for Valves which focusing on Powder Bed Fusion (PBF) and Direct Energy Disposition (DED) process for pressure-retaining valve manufacturing especially for nuclear power plant application with the same material. However, the poor mechanical properties and performance, especially fatigue strength of AM materials become a concern due to the defects and flaws as the results of layering and multiple interfaces and welding related discontinuities. In this study, the fatigue strength of PBF and DED manufactured and Ultrasonic Nanocrystal Surface Modification (UNSM) treated UNS S31603 austenitic stainless steel was investigated.


Author(s):  
Krishna Kishore Mugada ◽  
Aravindan Sivanandam ◽  
Ravi Kumar Digavalli

Wire + Arc additive manufacturing (WAAM) processes have become popular because of their proven capabilities to produce large metallic components with high deposition rates (promoted by arc-based processes) compared to conventional additive manufacturing processes such as powder bed fusion, binder jetting, direct energy deposition, etc. The applications of WAAM processes were constantly increasing in the manufacturing sector, which necessitates an understanding of the process capability to various metals. This chapter outlines the significant outcomes of the WAAM process for most of the engineering metals in terms of microstructure and mechanical properties. Discussion on various defects associated with the processed components is also presented. Potential application of WAAM for different metals such as aluminum and its alloys, titanium, and steels was discussed. The research indicates that the components manufactured by the WAAM process have significant microstructural changes and improved mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document