Cancer Imaging and Thermal Therapy Facilitated by Nanoparticles and Multiphoton Microscopy

Author(s):  
Emily S. Day ◽  
Lissett R. Bickford ◽  
Rebekah A. Drezek ◽  
Jennifer L. West

Despite use of currently available technologies, cancer remains one of the leading causes of death worldwide. Gold-based nanoparticles that strongly absorb near-infrared light, such as nanoshells and nanorods, have shown potential as both diagnostic and therapeutic agents for cancer management (1–3). In this work we explored the use of gold-gold sulfide nanoparticles (mean diameter = 37 nm) with peak plasmon resonance at 800 nm for combined imaging and therapy of breast cancer. Upon excitation with a pulsed laser, these particles exhibit two-photon induced luminescence which may be used to image cancer cells. In addition, by increasing the power output of the laser, cancer cells can be thermally ablated as the gold-gold sulfide nanoparticles convert the light energy into heat.

2014 ◽  
Vol 07 (05) ◽  
pp. 1330010 ◽  
Author(s):  
Elijah Yew ◽  
Christopher Rowlands ◽  
Peter T. C. So

This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, such as second-harmonic generation, have no analogue in one-photon microscopy. While the penetration depths of photons into tissue are typically limited on the order of hundreds of microns, this is of less concern in dermatology, as the skin is thin and readily accessible. As a result, multiphoton microscopy in dermatology has generated a great deal of interest, much of which is summarized here. The review covers the interaction of light and tissue, as well as the various considerations that must be made when designing an instrument. The state of multiphoton microscopy in imaging skin cancer and various other diseases is also discussed, along with the investigation of aging and regeneration phenomena, and finally, the use of multiphoton microscopy to analyze the transdermal transport of drugs, cosmetics and other agents is summarized. The review concludes with a look at potential future research directions, especially those that are necessary to push these techniques into widespread clinical acceptance.


2017 ◽  
Vol 61 ◽  
pp. 54-65 ◽  
Author(s):  
Francisco Martín-Saavedra ◽  
Eduardo Ruiz-Hernández ◽  
Clara Escudero-Duch ◽  
Martín Prieto ◽  
Manuel Arruebo ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3061
Author(s):  
Natalia Krasteva ◽  
Dessislava Staneva ◽  
Bela Vasileva ◽  
George Miloshev ◽  
Milena Georgieva

Central focus in modern anticancer nanosystems is given to certain types of nanomaterials such as graphene oxide (GO). Its functionalization with polyethylene glycol (PEG) demonstrates high delivery efficiency and controllable release of proteins, bioimaging agents, chemotherapeutics and anticancer drugs. GO–PEG has a good biological safety profile, exhibits high NIR absorbance and capacity in photothermal treatment. To investigate the bioactivity of PEGylated GO NPs in combination with NIR irradiation on colorectal cancer cells we conducted experiments that aim to reveal the molecular mechanisms of action of this nanocarrier, combined with near-infrared light (NIR) on the high invasive Colon26 and the low invasive HT29 colon cancer cell lines. During reaching cancer cells the phototoxicity of GO–PEG is modulated by NIR laser irradiation. We observed that PEGylation of GO nanoparticles has well-pronounced biocompatibility toward colorectal carcinoma cells, besides their different malignant potential and treatment times. This biocompatibility is potentiated when GO–PEG treatment is combined with NIR irradiation, especially for cells cultured and treated for 24 h. The tested bioactivity of GO–PEG in combination with NIR irradiation induced little to no damages in DNA and did not influence the mitochondrial activity. Our findings demonstrate the potential of GO–PEG-based photoactivity as a nanosystem for colorectal cancer treatment.


2018 ◽  
Vol 140 (46) ◽  
pp. 15957-15968 ◽  
Author(s):  
Ming-De Li ◽  
Nai-Kei Wong ◽  
Jia Xiao ◽  
Ruixue Zhu ◽  
Liangliang Wu ◽  
...  

2020 ◽  
Vol 6 (44) ◽  
pp. eabb6165
Author(s):  
Lukas Pfeifer ◽  
Nong V. Hoang ◽  
Maximilian Scherübl ◽  
Maxim S. Pshenichnikov ◽  
Ben L. Feringa

Light-controlled artificial molecular machines hold tremendous potential to revolutionize molecular sciences as autonomous motion allows the design of smart materials and systems whose properties can respond, adapt, and be modified on command. One long-standing challenge toward future applicability has been the need to develop methods using low-energy, low-intensity, near-infrared light to power these nanomachines. Here, we describe a rotary molecular motor sensitized by a two-photon absorber, which efficiently operates under near-infrared light at intensities and wavelengths compatible with in vivo studies. Time-resolved spectroscopy was used to gain insight into the mechanism of energy transfer to the motor following initial two-photon excitation. Our results offer prospects toward in vitro and in vivo applications of artificial molecular motors.


Author(s):  
Iuliia Golovynska ◽  
Sergii Golovynskyi ◽  
Yurii V. Stepanov ◽  
Liudmyla I. Stepanova ◽  
Junle Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document