Conditional Short-Crested Waves in Shallow Water and With Superimposed Current

Author(s):  
Jo̸rgen Juncher Jensen

For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes’ wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean waves is poorly represented, as the shape of the wave spectrum does not enter the wave kinematics. To overcome this problem and still keep the simplicity of a deterministic approach, Tromans, Anaturk and Hagemeijer (1991) suggested the use of a deterministic wave, defined as the expected linear Airy wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected linear short-crested wave riding on a uniform current is given. The analysis is based on the conventional shallow water Airy wave theory and the direction of the main wind direction can make any direction with the current. A consistent derivation of the wave spectrum taking into account current and finite water depth is used. The numerical results show a significant effect of the water depth, the directional spreading and the current on the conditional mean wave profile. Extensions to higher order waves are finally discussed.

Author(s):  
Jo̸rgen Juncher Jensen

For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes’ wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean waves is poorly represented, as the shape of the wave spectrum does not enter the wave kinematics. To overcome this problem and still keep the simplicity of a deterministic approach, Tromans, Anaturk and Hagemeijer (1991) suggested the use of a deterministic wave, defined as the expected linear Airy wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected second order short-crested wave riding on a uniform current is given. The analysis is based on the second order Sharma and Dean shallow water wave theory and the direction of the main wind direction can make any direction with the current. Numerical results showing the importance of the water depth, the directional spreading and the current on the conditional mean wave profile and the associated wave kinematics are presented. A discussion of the use of the conditional wave approach as design waves is given.


1979 ◽  
Vol 94 (1) ◽  
pp. 129-161 ◽  
Author(s):  
J. D. Fenton

A method is outlined by which high-order solutions are obtained for steadily progressing shallow water waves. It is shown that a suitable expansion parameter for these cnoidal wave solutions is the dimensionless wave height divided by the parameter m of the cn functions: this explicitly shows the limitation of the theory to waves in relatively shallow water. The corresponding deep water limitation for Stokes waves is analysed and a modified expansion parameter suggested.Cnoidal wave solutions to fifth order are given so that a steady wave problem with known water depth, wave height and wave period or length may be solved to give expressions for the wave profile and fluid velocities, as well as integral quantities such as wave power and radiation stress. These series solutions seem to exhibit asymptotic behaviour such that there is no gain in including terms beyond fifth order. Results from the present theory are compared with exact numerical results and with experiment. It is concluded that the fifth-order cnoidal theory should be used in preference to fifth-order Stokes wave theory for wavelengths greater than eight times the water depth, when it gives quite accurate results.


2011 ◽  
Vol 2 (2) ◽  
pp. 320-333
Author(s):  
F. Van den Abeele ◽  
J. Vande Voorde

The worldwide demand for energy, and in particular fossil fuels, keeps pushing the boundaries of offshoreengineering. Oil and gas majors are conducting their exploration and production activities in remotelocations and water depths exceeding 3000 meters. Such challenging conditions call for enhancedengineering techniques to cope with the risks of collapse, fatigue and pressure containment.On the other hand, offshore structures in shallow water depth (up to 100 meter) require a different anddedicated approach. Such structures are less prone to unstable collapse, but are often subjected to higherflow velocities, induced by both tides and waves. In this paper, numerical tools and utilities to study thestability of offshore structures in shallow water depth are reviewed, and three case studies are provided.First, the Coupled Eulerian Lagrangian (CEL) approach is demonstrated to combine the effects of fluid flowon the structural response of offshore structures. This approach is used to predict fluid flow aroundsubmersible platforms and jack-up rigs.Then, a Computational Fluid Dynamics (CFD) analysis is performed to calculate the turbulent Von Karmanstreet in the wake of subsea structures. At higher Reynolds numbers, this turbulent flow can give rise tovortex shedding and hence cyclic loading. Fluid structure interaction is applied to investigate the dynamicsof submarine risers, and evaluate the susceptibility of vortex induced vibrations.As a third case study, a hydrodynamic analysis is conducted to assess the combined effects of steadycurrent and oscillatory wave-induced flow on submerged structures. At the end of this paper, such ananalysis is performed to calculate drag, lift and inertia forces on partially buried subsea pipelines.


Author(s):  
Felice Arena ◽  
Alfredo Ascanelli

The interest and the studies on nonlinear waves are increased recently for their importance in the interaction with floating and fixed bodies. It is also well known that nonlinearities influence wave crest and wave trough distributions, both deviating from Rayleigh law. In this paper a theoretical crest distribution is obtained taking into account the extension of Boccotti’s Quasi Determinism theory, up to the second order for the case of three-dimensional waves, in finite water depth. To this purpose the Fedele & Arena [2005] distribution is generalized to three-dimensional waves on an arbitrary water depth. The comparison with Forristall second order model shows the theoretical confirmation of his conclusion: the crest distribution in deep water for long-crested and short crested waves are very close to each other; in shallow water the crest heights in three dimensional waves are greater than values given by long-crested model.


Author(s):  
Yanfei Deng ◽  
Jianmin Yang ◽  
Longfei Xiao

In the last few decades, the hydrodynamic performance of offshore structures has been widely studied to ensure their safety as well as to achieve an economical design. However, an increasing number of reported accidents due to rough ocean waves call for in-depth investigations on the loads and motions of offshore structures, particularly the effect of freak waves. The aim of this paper is to determine the sea conditions that may cause the maximum motion responses of offshore structures, which have a significant effect on the loads of mooring systems because of their tight relationship. As a preliminary step, the response amplitude operators (RAOs) of a semisubmersible platform of 500 meters operating depth are obtained with the frequency-domain analysis method. Subsequently, a series of predetermined extreme wave sequences with different wave group characteristics, such as the maximum crest amplitude and the time lag between successive high waves, are adopted to calculate the hydrodynamic performance of the semisubmersible with mooring systems in time-domain. The paper shows that the maximum motion responses not only depend on the largest wave crest amplitude but also the time lags between successive giant waves. This paper will provide an important reference for future designs which could consider the most dangerous wave environment.


Author(s):  
B. Asgarian ◽  
A. Mohebbinejad ◽  
R. H. Soltani

Dynamic response of offshore platforms subjected to wave and current is of fundamental importance in analysis. The first step in dynamic analysis is computing dynamic characteristics of the structure. Because of pile-soil-structure and fluid-structure interactive effects in the dynamic behavior, the model is very complex. In this paper a simplified model for dynamic response of jacket-type offshore structures subjected to wave loading is used. Since wave loads on offshore platforms vary with time, they produce dynamic effects on structures. In the model used in this paper, all of the structural elements are modeled as vertical equivalent cylinders that are in the direction of the wave crest. In the simplified model, the degrees of freedom are considered at the seabed, jacket horizontal elevations and topside center of gravity. The stiffness properties of the model are computed considering the stiffnesses of the vertical bracings, legs and piles. The structural mass is considered as lumped nodal masses at horizontal elevations and topside center of gravity. The hydrodynamic added mass in addition to the structural masses was modeled at jacket horizontal elevations. In the simplified model, for computing wave loading, the projected areas of all members in the direction of the wave crest are considered. For the wave loading calculation, Morison equation is considered. The fluid velocities are calculated for the submerged portions of the structures using a computer program developed for this purpose. In this program both Airy and Stokes wave theories can be used. This model can be used to assess dynamic properties and responses of jacket type offshore structures. The model is used to assess the response of three jacket-type offshore platforms in Persian Gulf subjected to loadings due to several waves. The results in terms of dynamic characteristics and responses were compared with the more accurate analysis results using SACS software. The results are in a good agreement with the SACS analysis outputs, i.e. structural periods, mode shapes and dynamic response.


1970 ◽  
Vol 1 (12) ◽  
pp. 19 ◽  
Author(s):  
Yuichi Iwagaki ◽  
Tetsuo Sakai

This paper firstly describes two methods to measure vertical distribution and time variation of horizontal water particle velocity induced "by surface waves in a wave tank These two methods consist of tracing hydrogen bubbles and using hot film anemometers, respectively Secondly, the experimental results by the two methods are presented with the theoretical curves derived from the small amplitude wave theory, Stokes wave theory of 3rd order, and the hyperbolic wave theory as an approximate expression of the cnoidal wave theory Finally, based on the comparison of the experimental data with the theoretical curves, the applicability of the finite amplitude wave theories, which has been studied for the wave profile, wave velocity, wave length and wave crest height, is discussed from view point of the water particle velocity.


Author(s):  
Cuilin Li ◽  
Dingyong Yu ◽  
Yangyang Gao ◽  
Junxian Yang

Many empirical and theoretical distribution functions for wave crest heights have been proposed, but there is a lack of agreement. With the development of ocean exploitation, waves crest heights represent a key point in the design of coastal structures, both fixed and floating, for shoreline protection and flood prevention. Waves crest height is the dominant parameter in assessing the likelihood of wave-in-deck impact and its resulting severe damage. Unlike wave heights, wave crests generally appear to be affected by nonlinearities; therefore, linear wave theory could not be satisfied to practical application. It is great significant to estimate a new nonlinear wave crest height distribution model correctly. This paper derives an approximation distribution formula based on Stokes wave theory. The resulting theoretical forms for nonlinear wave crest are compared with observed data and discussed in detail. The results are shown to be in good agreement. Furthermore, the results indicate that the new theoretical distribution has more accurate than other methods presented in this paper (e.g. Rayleigh distribution and Weibull distribution) and appears to have a greater range of applicability.


2018 ◽  
Author(s):  
Øystein Lande ◽  
Thomas Berge Johannessen

Using the computational fluid domain for propagation of ocean waves have become an important tool for the calculation of highly nonlinear wave loading on offshore structures such as run-up, wave slamming and non-linear breaking wave kinematics. At present, there are many computational fluid dynamics (CFD) codes available which can be employed to calculate water wave propagation and wave induced loading on structures. For practical reasons, however, the use of these codes is often limited to the propagation of regular uni-directional waves initiated very close to the structure, or to investigating the properties and loading due to measured waves by fitting a numerical wave to a measured wave profile. The present paper focuses on the propagation of steep irregular and short crested wave groups up to the point of breaking. Indeed, this is challenging because of the highly nonlinear behavior of irregular wave groups as steepness increases and they approach the point of breaking. The complexity further increases with the introduction of short-crestedness requiring computation in a large 3-dimentional domain. Two CFD codes are used in this comparison study which are believed to be well conditioned for wave propagation, the commercial code ComFLOW (available through the ComFLOW JIP project) and the open-source code BASILISK. The primary objective of this paper to show the two CFD codes capability of recreating measured irregular wave groups, using the known linear wave components from the model test as input to fluid domain. Wave elevation is measured at several locations in the close vicinity of the focus point. The comparison is carried out for a selection of events with variation in steepness, wave spreading and wave spectrum.


Author(s):  
Dara Williams ◽  
Kevin Purcell

Current market trends in the construction of newbuild drilling rigs indicate that the market is driven by demand for ultra-deepwater capacity semi-submersible rigs and drillships. These drilling vessels have capacity to drill in water depths of up to 12,000ft and possibly beyond in the near future. With increase in water depth capacity, more complex and heavier BOP stacks are required. Many modern drilling vessels are now incorporating BOPs with capacities of 20ksi pressure and up to 7 shear/seal rams incorporated. This leads to increased height and weight in the BOP. Whilst newbuild drilling vessels will be required to operate in water depths from 1,500ft to 12,000ft whilst on DP mode, deepwater semi-submersible drilling rigs will also have capability for operation in water depths <1,500ft using conventional mooring. Recent experience with modern deepwater rigs with large BOP stacks in water depth of 1,500ft or less suggests increased risk of fatigue when compared to 3rd generation rigs. If future trends continue with larger BOP stacks being designed then the problem of wellhead fatigue with modern deepwater drilling vessels is likely to become more acute. As noted in previous studies the water depth at drillsite has a major impact on the level of fatigue accumulated in the wellhead system. The main driver for this has been found to be the height and weight of the BOP. With requirements for newbuild drilling rigs for 12,000ft water depth capacity being the industry norm, and with increased requirements for BOP functionality, the gap between wellhead loading from 3rd generation and 6th generation rigs is widening. Given that many 3rd generation rigs will likely be decommissioned in the coming years then the usage of 6th generation rigs for shallow water operations will only become more commonplace due to rig availability. Thus, unless market conditions dictate the construction of smaller and lighter BOP stacks, the design of shallow water wells will be critical to ensure fatigue loading on the wellhead and conductor is kept to a minimum. This paper presents a summary of the results of a series of parameter studies carried out to assess a range of options for optimisation of casing and conductor design for 6th generation rigs in shallow water. Various recommendations are made as part of this study as to the addition of supplemental casing and conductor strings of varying sizes and wall thickness to ensure a robust conductor system design for fatigue performance.


Sign in / Sign up

Export Citation Format

Share Document