Evaluation of Ductile Cracking Criterion for Grade X100 Linepipe and Relationship to Large Scale Fracture Behavior

Author(s):  
Nobuyuki Ishikawa ◽  
Shigeru Endo ◽  
Alan Glover ◽  
David Horsley ◽  
Masao Toyoda

Recent developments in the manufacturing process of steel plate for high strength linepipe have enabled superior toughness to prevent brittle fracture of the pipe body. Techniques for non-destructive inspection have also improved, and large flaws that could lead to brittle fracture are highly unlikely in recent high strength pipelines. However, large amounts of plastic deformation can be expected in seismic or permafrost regions. Prevention of ductile fracture of the pipe body or weldment therefore becomes a key issue in defining the tensile strain limit. Ductile fracture is considered to occur by growth and coalescence of voids, and is affected by stress triaxiality and plastic straining at the cracked region. Although many studies have been carried out to evaluate ductile cracking criteria, its transferability to large-scale fracture behavior has not been thoroughly investigated. In this study, ductile cracking of high strength linepipe steels, Grade X80 and X100, was investigated. Notched round bar specimens with different notch root radii were tested to determine the precise conditions for initiation of ductile fracture. Stress and strain conditions at the notch regions were evaluated by FE analysis, and the “critical equivalent plastic strain” was defined at conditions corresponding to ductile fracture initiation in the experimental small specimen tests. Ductile crack initiation behavior was also determined for wide plate test specimens by making close observations of the notch root area. 3-D FE analysis of the wide plate tensile test showed that the equivalent plastic strain at the point of ductile fracture initiation was in close agreement with that in the notched round bas specimen. Thus, the “critical equivalent plastic strain,” determined by small notched round bar specimens, can be considered as a transferable criterion to predict large-scale fracture behavior in wide plate tests. Concepts of strain based design in terms of preventing ductile failure from a surface flaw by applying critical strain to cracking were also discussed in this paper. Results were compared to conventional grade linepipe steels and structural steels, showing that recent high strength linepipe steels have higher resistance to ductile cracking than conventional structural steels. In addition, 3-D FE analyses were used in a parametric study to determine the effects of Y/T and uniform strain on the onset of ductile cracking behaviour. The results of these analyses show the relative importance of materials properties on the resistance to ductile cracking.

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 767
Author(s):  
Yazhi Zhu ◽  
Shiping Huang ◽  
Hizb Sajid

This paper aims to (1) study ductile fracture behavior, and (2) provide a computational tool for predicting fracture initiation in ASTM A572 Gr. 50 structural steels under axisymmetric tension loading are heated to elevated temperatures and cooled down in air and in water. Employing the post-fire test results reported in the literature for A572 Gr. 50 steels, this paper carries out coupon-level finite element (FE) simulations to capture the stress and strain fields and explore the micro-mechanism of post-fire fracture in ASTM A572 Gr. 50 steels, respectively. Numerical results show that the effects of the experienced temperature and cooling method on fracture parameters are more significant for the steels cooled after being heated to temperatures from 800 °C to 1000 °C than those from 500 °C to 700 °C, due to microstructural changes during the cooling process. Air-cooled and water-cooled specimens show an improvement and a significant reduction in ductility, respectively. A modified void growth model (VGM) is proposed by introducing two additional temperature-dependent functions, through which the effects of elevated temperature and cooling method on fracture behavior are quantitatively analyzed. Limitations of this study are also discussed.


1978 ◽  
Vol 100 (3) ◽  
pp. 279-286 ◽  
Author(s):  
D. M. Norris ◽  
J. E. Reaugh ◽  
B. Moran ◽  
D. F. Quin˜ones

We describe a computer model for predicting ductile-fracture initiation and propagation. The model is based on plastic strain. Fracture starts or a crack extends when the integrated product of the equivalent plastic-strain increment and a function of the mean stress exceeds a critical value over a critical length. This critical length is characteristic of the microstructure of the material. The computer fracture model is calibrated by computer simulation of simple and notched round-bar tension tests and a precracked compact tension test. The model is then used to predict fracture initiation and propagation is the standard Charpy V-notch specimen. The computed results are compared with experiments. The model predicts fracture toughness from tests of standard surveillance specimens from nuclear-reactor pressure vessels and can be applied to fracture calculations for these vessels.


1999 ◽  
Vol 122 (3) ◽  
pp. 476-483 ◽  
Author(s):  
A. M. Goijaerts ◽  
L. E. Govaert ◽  
F. P. T. Baaijens

This study is focused on the description of ductile fracture initiation, which is needed to predict product shapes in the blanking process. Two approaches are elaborated using a local ductile fracture model. According to literature, characterization of such a model should take place under loading conditions, comparable to the application. Therefore, the first approach incorporates the characterization of a ductile fracture model in a blanking experiment. The second approach is more favorable for industry. In this approach a tensile test is used to characterize the fracture model, instead of a complex and elaborate blanking experiment. Finite element simulations and blanking experiments are performed for five different clearances to validate both approaches. In conclusion it can be stated that for the investigated material, the first approach gives very good results within the experimental error. The second approach, the more favorable one for industry, yields results within 6 percent of the experiments over a wide, industrial range of clearances, when a newly proposed criterion is used. [S1087-1357(00)02202-4]


Author(s):  
Claudio Ruggieri ◽  
Fernando F. Santos ◽  
Mitsuru Ohata ◽  
Masao Toyoda

This study explores the capabilities of a computational cell framework into a 3-D setting to model ductile fracture behavior in tensile specimens and damaged pipelines. The cell methodology provides a convenient approach for ductile crack extension suitable for large scale numerical analyses which includes a damage criterion and a microstructural length scale over which damage occurs. Laboratory testing of a high strength structural steel provides the experimental stress-strain data for round bar and circumferentially notched tensile specimens to calibrate the cell model parameters for the material. The present work applies the cell methodology using two damage criterion to describe ductile fracture in tensile specimens: (1) the Gurson-Tvergaard (GT) constitutive model for the softening of material and (2) the stress-modified, critical strain (SMCS) criterion for void coalescence. These damage criteria are then applied to predict ductile cracking for a pipe specimen tested under cycling bend loading. While the methodology still appears to have limited applicability to predict ductile cracking behavior in pipe specimens, the cell model predictions of the ductile response for the tensile specimens show good agreemeent with experimental measurements.


2007 ◽  
Vol 546-549 ◽  
pp. 703-706
Author(s):  
Zhong Qi Yu ◽  
Zhong Qin Lin ◽  
Yu Ying Yang

Aluminum alloy sheet is becoming one of the main materials to take the place of steel components to reduce the vehicle mass due to the advantage of low special density, high strength and corrosion resistance. To predict the formability during the aluminium alloy sheet forming accurately, , a ductile fracture criterion developed by the authors, was for numerical simulation, in this paper. Fracture behavior in square-cup forming of the aluminium alloy LF21M was predicted by means of the criterion. Comparison of the predicted results with experimental values shows that the critical punch stroke and the fracture initiation position in square-cup forming of the aluminium alloy have been predicted successfully by the criterion.


Sign in / Sign up

Export Citation Format

Share Document