Monitoring Axial Strain in Synthetic Fiber Mooring Ropes Using Polymeric Optical Fibers

Author(s):  
D. Barton Smith ◽  
Jerry G. Williams

Synthetic fiber ropes constructed of polyester are providing an important new technology for mooring deep-water drilling and production platforms. Considerable effort is being directed toward advancing and qualifying this enabling and cost-effective technology. To date, synthetic fiber mooring ropes have been successfully deployed in Brazil and they have seen limited service in the Gulf of Mexico. Synthetic fiber mooring ropes have high strength-to-weight ratios and possess adequate stiffness, but they are much more susceptible to damage than their steel counterparts. Future safe deployment of synthetic fiber mooring ropes would be significantly enhanced if a reliable technique were available to monitor the performance of the ropes in service and thus provide an early warning of the loss of structural integrity. Test data in the open literature indicates that the strain in the rope at failure is essentially a constant independent of load path or history. Measurement of the accumulated strain in the rope should thus provide a reliable benchmark with which to estimate the remaining life and establish criteria for rope recertification or retirement. This paper discusses the results of research and development activities aimed at developing a reliable, robust method for monitoring strain in braided and twisted strand Synthetic Fiber Mooring Ropes [1]. The strain transducer is a polymeric optical fiber, integrated into the mooring rope and interrogated with Optical Time-Domain Reflectometry (OTDR) to measure changes in its length as the optical fiber and rope are stressed. The method provides a direct measurement of large axial strains. Strains measured in polymeric optical fibers exhibit good one-to-one correlation with applied strains within the test range studied (10% or less, typically). The integrated polymeric optical fiber has been shown to withstand large numbers of repeated cycles to high strains without failure and to accurately track the hysteresis exhibited by polyester rope. Results are reported for tests conducted with polymeric optical fibers integrated into typical mooring rope elements.

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 574 ◽  
Author(s):  
Ismail Laarossi ◽  
María Quintela-Incera ◽  
José López-Higuera

An experimental study of a high temperature distributed optical fiber sensor based on Raman Optical-Time-Domain-Reflectometry (ROTDR) (up to 450 °C) and optical fibers with different coatings (polyimide/carbon, copper, aluminum and gold) is presented. Analysis of the distributed temperature sensor (DTS) measurements determined the most appropriate optical fiber to be used in high temperature industrial environment over long periods of time. To demonstrate the feasibility of this DTS for an industrial application, an optical cable was designed with the appropriate optical fiber and it was hermetically sealed to provide the required mechanical resistance and isolate the fiber from environmental degradations. This cable was used to measure temperature up to 360 °C of an industrial furnace during 7 days.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1862 ◽  
Author(s):  
Qing Bai ◽  
Qinglin Wang ◽  
Dong Wang ◽  
Yu Wang ◽  
Yan Gao ◽  
...  

In the past two decades Brillouin-based sensors have emerged as a newly-developed optical fiber sensing technology for distributed temperature and strain measurements. Among these, the Brillouin optical time domain reflectometer (BOTDR) has attracted more and more research attention, because of its exclusive advantages, including single-end access, simple system architecture, easy implementation and widespread field applications. It is realized mainly by injecting optical pulses into the fiber and detecting the Brillouin frequency shift (BFS), which is linearly related to the change of ambient temperature and axial strain of the sensing fiber. In this paper, the authors provide a review of new progress on performance improvement and applications of BOTDR in the last decade. Firstly, the recent advances in improving the performance of BOTDRs are summarized, such as spatial resolution, signal-to-noise ratio and measurement accuracy, measurement speed, cross sensitivity and other properties. Moreover, novel-type optical fibers bring new characteristics to optic fiber sensors, hence we introduce the different Brillouin sensing features of special fibers, mainly covering the plastic optical fiber, photonic crystal fiber, few-mode fiber and other special fibers. Additionally, we present a brief overview of BOTDR application scenarios in many industrial fields and intelligent perception, including structural health monitoring of large-range infrastructure, geological disaster prewarning and other applications. To conclude, we discuss several challenges and prospects in the future development of BOTDRs.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Piotr Miluski ◽  
Marcin Kochanowicz ◽  
Jacek Żmojda ◽  
Dominik Dorosz

Optical signal amplification in the waveguiding structure of optical fibers can be used for optical telecommunication systems and new light sources constructions. Organic dyes doped materials are interesting for new applications in polymeric optical fibers technology due to their benefits (efficient fluorescence, high absorption cross section, and easy processing). This article presents a numerical simulation of gain in poly(methyl methacrylate) optical fiber doped by Oxazine 170 Perchlorate. The calculated gain characteristic for the used dye molar concentration (0.2·10-6–1.4·10-6) and pump power (1–10 kW) is presented. The fabricated fluorescent polymeric optical fiber is also shown. The presented analysis can be used for optical amplifier construction based on dye-doped polymeric optical fiber (POF).


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4461 ◽  
Author(s):  
Regina Magalhães ◽  
João Pereira ◽  
Oleksandr Tarasenko ◽  
Sonia Martin-Lopez ◽  
Miguel González-Herráez ◽  
...  

Nowadays there is an increasing demand for the cost-effective monitoring of potential threats to the integrity of high-voltage networks and electric power infrastructures. Optical fiber sensors are a particularly interesting solution for applications in these environments, due to their low cost and positive intrinsic features, including small size and weight, dielectric properties, and invulnerability to electromagnetic interference (EMI). However, due precisely to their intrinsic EMI-immune nature, the development of a distributed optical fiber sensing solution for the detection of partial discharges and external electrical fields is in principle very challenging. Here, we propose a method to exploit the third-order and second-order nonlinear effects in silica fibers, as a means to achieve highly sensitive distributed measurements of external electrical fields in real time. By monitoring the electric-field-induced variations in the refractive index using a highly sensitive Rayleigh-based CP-φOTDR scheme, we demonstrate the distributed detection of Kerr and Pockels electro-optic effects, and how those can assign a new sensing dimension to optical fibers, transducing external electric fields into visible minute disturbances in the guided light. The proposed sensing configuration, electro-optical time domain reflectometry, is validated both theoretically and experimentally, showing experimental second-order and third-order nonlinear coefficients, respectively, of χ(2) ~ 0.27 × 10−12 m/V and χ(3) ~ 2.5 × 10−22 m2/V2 for silica fibers.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Saifur Rahman ◽  
Farman Ali ◽  
Fazal Muhammad ◽  
Muhammad Irfan ◽  
Adam Glowacz ◽  
...  

Hundreds of kilometers of optical fibers are installed for optical meshes (OMs) to transmit data over long distances. The visualization of these deployed optical fibers is a highlighted issue because the conventional procedure can only measure the optical losses. Thus, this paper presents distributed vibration sensing (DVS) estimation mechanisms to visualize the optical fiber behavior installed for OMs which is not possible by conventional measurements. The proposed technique will detect the power of light inside the optical fiber, as well as different physical parameters such as the phase of transmitted light inside the thread, the frequency of vibration, and optical losses. The applicability of optical frequency domain reflectometry (OFDR) and optical time-domain reflectometry (OTDR) DVS techniques are validated theoretically for various state detection procedures in optical fibers. The simulation model is investigated in terms of elapsed time, the spectrum of a light signal, frequency, and the impact of many external physical accidents with optical fibers.


2012 ◽  
Vol E95.B (8) ◽  
pp. 2638-2641 ◽  
Author(s):  
Makoto YAMADA ◽  
Akisumi TOMOE ◽  
Takahiro KINOSHITA ◽  
Osanori KOYAMA ◽  
Yutaka KATUYAMA ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (7) ◽  
pp. 3254
Author(s):  
Marco Pisco ◽  
Francesco Galeotti

The realization of advanced optical fiber probes demands the integration of materials and structures on optical fibers with micro- and nanoscale definition. Although researchers often choose complex nanofabrication tools to implement their designs, the migration from proof-of-principle devices to mass production lab-on-fiber devices requires the development of sustainable and reliable technology for cost-effective production. To make it possible, continuous efforts are devoted to applying bottom-up nanofabrication based on self-assembly to decorate the optical fiber with highly ordered photonic structures. The main challenges still pertain to “order” attainment and the limited number of implementable geometries. In this review, we try to shed light on the importance of self-assembled ordered patterns for lab-on-fiber technology. After a brief presentation of the light manipulation possibilities concerned with ordered structures, and of the new prospects offered by aperiodically ordered structures, we briefly recall how the bottom-up approach can be applied to create ordered patterns on the optical fiber. Then, we present un-attempted methodologies, which can enlarge the set of achievable structures, and can potentially improve the yielding rate in finely ordered self-assembled optical fiber probes by eliminating undesired defects and increasing the order by post-processing treatments. Finally, we discuss the available tools to quantify the degree of order in the obtained photonic structures, by suggesting the use of key performance figures of merit in order to systematically evaluate to what extent the pattern is really “ordered”. We hope such a collection of articles and discussion herein could inspire new directions and hint at best practices to fully exploit the benefits inherent to self-organization phenomena leading to ordered systems.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5049
Author(s):  
Agnese Coscetta ◽  
Ester Catalano ◽  
Enis Cerri ◽  
Ricardo Oliveira ◽  
Lucia Bilro ◽  
...  

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.


Sign in / Sign up

Export Citation Format

Share Document