Cross Flow and In-Line Damping Measurements From Forced Excitations of a Flexible Cylinder in a Uniform Flow

Author(s):  
Madan Venugopal ◽  
J. Kim Vandiver

Tensioned flexible cylindrical structures are important in many ocean engineering applications such as moorings for buoys and platforms, marine risers and towing cables. Modeling the vibration of these structures is complicated because these are complex three-dimensional, unsymmetrical, fluid structure interaction problems. Damping is an important, but poorly understood, component of the response prediction models developed for modeling such systems. In particular, there is a scarcity of good data on damping of flexible cylinders vibrating in uniform and non-uniform external flow. This is, in part, due to the difficulty of measuring fluid damping on a vibrating cylinder in a flow. Results are presented here which address some of these limitations. Forced vibration tests were performed on two 13 ft long tensioned flexible cylinders (an ABS tube and a steel wire) in a current tank to determine in air and still water damping as well as cross flow and in-line damping in a uniform flow. The experimental methodology is described and results are presented for a range of reduced velocities. The results show an increase in fluid damping with increased reduced velocities for small amplitudes of vibration.

Author(s):  
Jie Wu ◽  
Malakonda Reddy Lekkala ◽  
Muk Chen Ong ◽  
Elizabeth Passano ◽  
Per Erlend Voie

Deepwater risers are susceptible to Vortex Induced Vibrations (VIV) when subjected to currents. When responding at high modes, fatigue damage the in in-line (IL) direction may become equally important as the cross-flow (CF) components. If a riser experiences directional currents, fatigue damage must be evaluated at several locations on the cross-section’s circumference. Accurate calculation of both IL and CF responses are therefore needed. Empirical VIV prediction programs, such as VIVANA, SHEAR7 and VIVA, are the most common tools used by the offshore industry to design against VIV loads. Progress has been seen in the prediction of CF responses. Efforts have also been made to include an IL load model in VIVANA. A set of excitation coefficient parameters were obtained from rigid cylinder test and adjusted using measured responses of one of the flexible cylinder VIV tests. This set of excitation coefficient parameters is still considered preliminary and further validation is required. Without an accurate IL response prediction, a conservative approach in VIV analysis has to be followed, i.e. all current profiles have to assumed to be uni-directional or acting in the same direction. The purpose of the present paper is to provide a reliable combined IL and CF load model for the empirical VIV prediction programs. VIV prediction using the existing combined IL and CF load model in VIVANA is validated against selected flexible cylinder test data. A case study of a deepwater top tension riser (TTR) has been carried out. The results indicate VIV fatigue damage 1 using 2D directional current profiles is less conservative compared to the traditional way of using unidirectional current profiles.


1986 ◽  
Vol 108 (2) ◽  
pp. 193-199 ◽  
Author(s):  
S. J. Price ◽  
M. P. Paidoussis

A quasi-static fluidelastic analysis is developed for a single flexible cylinder surrounded by rigid cylinders and subject to cross-flow. Although the analysis is quasi-static, it includes a frequency-dependent term which arises because of flow retardation around the front stagnation region of the cylinder. The combined effect of this flow retardation and of the fluid force field is to produce, for some intercylinder patterns of motion, a negative fluid damping, acting in the sense normal to the flow direction. Using this analysis, the effect of array pattern of the adjacent rigid cylinders is investigated, and it is shown that for some geometries a single flexible cylinder will become unstable while for others it will not. For those array patterns which the theory indicates to be potentially unstable, the variation of critical flow velocity with mass-damping parameter is obtained and compared with available experimental data. In general, the comparison is good, indicating the validity of this analysis.


Author(s):  
Dhyanjyoti Deka ◽  
Paul R. Hays ◽  
Kamaldev Raghavan ◽  
Mike Campbell

VIVA is a vortex induced vibration (VIV) analysis software that to date has not been widely used as a design tool in the offshore oil and gas industry. VIVA employs a hydrodynamic database that has been benchmarked and calibrated against test data [1]. It offers relatively few input variables reducing the risk of user induced variability of results [2]. In addition to cross flow current induced standing wave vibration, VIVA has the capability of predicting traveling waves on a subsea riser, or a combination of standing and traveling waves. Riser boundary conditions including fixed, pinned, flex joint or SCR seabed interaction can be modeled using springs and dashpots. VIVA calculates riser natural frequencies and mode shapes and also has the flexibility to import external modal solutions. In this paper, the applicability of VIVA for the design of straked steel catenary risers (SCR) and top tensioned risers (TTR) is explored. The use of linear and rotational springs provided by VIVA to model SCR soil interaction and flex joint articulation is evaluated. Comparisons of the VIV fatigue damage output with internal and external modal solution is presented in this paper. This paper includes validation of the VIVA generated modal solution by comparing the modal frequencies and curvatures against a finite element (FE) model of the risers. Fatigue life is calculated using long term Gulf of Mexico (GoM) currents and is compared against the industry standard software SHEAR7. Three different lift curve selections in SHEAR7 are used for this comparison. The differences in riser response prediction by the two software tools are discussed in detail. The sensitivity of the VIVA predicted riser response to the absence of VIV suppression devices is presented in this paper. The riser VIV response with and without external FE generated modal input is compared and the relative merits of the two modeling approaches are discussed. Finally, the recommended approach for VIVA usage for SCR and TTR design is given.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ying Yan ◽  
Gengping Li ◽  
Jinjun Tang ◽  
Zhongyin Guo

Operating speed is a critical indicator for road alignment consistency design and safety evaluation. Although extensive studies have been conducted on operating speed prediction, few models can finish practical continuous prediction at each point along alignment on multilane highways. This study proposes a novel method to estimate the operating speed for multilane highways in China from the aspect of the three-dimensional alignment combination. Operating speed data collected in field experiments on 304 different alignment combination sections are detected by means of Global Positioning System. First, the alignment comprehensive index (ACI) is designed and introduced to describe the function accounting for alignment continuity and driving safety. The variables used in ACI include horizontal curve radius, change rate of curvature, deflection angle of curve, grade, and lane width. Second, the influence range of front and rear alignment on speed is determined on the basis of drivers’ fixation range and dynamical properties of vehicles. Furthermore, a prediction model based on exponential relationships between road alignment and speeds is designed to predict the speed of passenger cars and trucks. Finally, three common criteria are utilized to evaluate the effectiveness of the prediction models. The results indicate that the prediction models outperform the other two operating speed models for their higher prediction accuracy.


2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


2011 ◽  
Vol 677 ◽  
pp. 342-382 ◽  
Author(s):  
REMI BOURGUET ◽  
GEORGE E. KARNIADAKIS ◽  
MICHAEL S. TRIANTAFYLLOU

We investigate the in-line and cross-flow vortex-induced vibrations of a long cylindrical tensioned beam, with length to diameter ratio L/D = 200, placed within a linearly sheared oncoming flow, using three-dimensional direct numerical simulation. The study is conducted at three Reynolds numbers, from 110 to 1100 based on maximum velocity, so as to include the transition to turbulence in the wake. The selected tension and bending stiffness lead to high-wavenumber vibrations, similar to those encountered in long ocean structures. The resulting vortex-induced vibrations consist of a mixture of standing and travelling wave patterns in both the in-line and cross-flow directions; the travelling wave component is preferentially oriented from high to low velocity regions. The in-line and cross-flow vibrations have a frequency ratio approximately equal to 2. Lock-in, the phenomenon of self-excited vibrations accompanied by synchronization between the vortex shedding and cross-flow vibration frequencies, occurs in the high-velocity region, extending across 30% or more of the beam length. The occurrence of lock-in disrupts the spanwise regularity of the cellular patterns observed in the wake of stationary cylinders in shear flow. The wake exhibits an oblique vortex shedding pattern, inclined in the direction of the travelling wave component of the cylinder vibrations. Vortex splittings occur between spanwise cells of constant vortex shedding frequency. The flow excites the cylinder under the lock-in condition with a preferential in-line versus cross-flow motion phase difference corresponding to counter-clockwise, figure-eight orbits; but it damps cylinder vibrations in the non-lock-in region. Both mono-frequency and multi-frequency responses may be excited. In the case of multi-frequency response and within the lock-in region, the wake can lock in to different frequencies at various spanwise locations; however, lock-in is a locally mono-frequency event, and hence the flow supplies energy to the structure mainly at the local lock-in frequency.


2019 ◽  
Author(s):  
Budi Santoso ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Genta Praha Picaso

1973 ◽  
Vol 24 (1) ◽  
pp. 25-33
Author(s):  
J W Craggs ◽  
K W Mangler ◽  
M Zamir

SummaryWhen the incompressible potential flow past a three-dimensional body is represented by source distributions on the body surface, these source distributions have singularities near an edge or corner, for example á trailing edge of a wing or the (unfaired) intersection of a body and a wing. The nature of these singularities is discussed. When assuming slow variations of the geometry in the main flow direction we can consider a two-dimensional problem in the cross-flow plane. Here the tangential velocities and source distributions are proportional to certain powers of the distance from the corner. For example at a convex right-angled corner these powers are − ⅓ in the asymmetric case (the bisector is a potential line) and ⅓ in the symmetric case (the bisector is a streamline) for both sources and tangential velocities. At a concave right-angled corner the corresponding values for the source distributions are ⅓ (asymmetric case) and − ⅓ (symmetric case) whereas they are 1 and 3 respectively for the tangential velocities.


Sign in / Sign up

Export Citation Format

Share Document