scholarly journals THE MEASURED PROPERTIES OF IRREGULAR WAVE BREAKING AND WAVE HEIGHT CHANGE AFTER BREAKING ON THE SLOPE

1988 ◽  
Vol 1 (21) ◽  
pp. 29 ◽  
Author(s):  
Akira Seyama ◽  
Akira Kimura

Wave height change of the zero-down-cross waves on uniform slopes were examined experimentally. The properties of shoaling, breaking and decay after breaking for a total of about 4,000 irregular waves of the Pierson-Moskowitz type on 4 different slopes (1/10, 1/20, 1/30 and 1/50) were investigated. The shoaling property of the zero-down-cross waves can be approximated by the linear wave theory. However, the properties of breaking and decay after breaking differ considerably from those for periodic waves. The wave height water depth ratio (H/d) at the breaking point for the zero-down-cross waves is about 30% smaller than that for periodic waves on average despite the slopes. Wave height decay after breaking also differs from that for periodic waves and can be classified into three regions, i.e. shoaling, plunging and bore regions. Experimental equations for the breaking condition and wave height change after breaking are proposed in the study. A new definition of water depth for the zero-crossing wave analysis which can reduce the fluctuation in the plotted data is also proposed.

Author(s):  
Bing Ren ◽  
Xuelin Li ◽  
Peng Han ◽  
Yongxue Wang

A numerical irregular wave flume is developed using VOF method in conjunction with Reynolds equations. An active absorbing wave-maker based on linear wave theory is set on the left boundary of the wave flume to absorb the re-reflected waves. A sponge layer is set on the open boundary to absorb the outgoing waves. The numerical results of regular and irregular waves using the active absorbing-generating boundary are compared to the numerical results using the ordinary generating boundary to verify the performance of the active absorbing-generator boundary. The linear damping coefficient is used in the sponge layer. The damping characteristics of the sponger layer implemented in the wave flume are discussed. The computed wave spectra are compared with the target spectra.


Author(s):  
Signe Schlo̸er ◽  
Henrik Bredmose ◽  
Harry B. Bingham

Forces on a monopile from a nonlinear irregular unidirectional wave model are investigated. Two seabed profiles of different slopes are considered. Morison’s equation is used to investigate the forcing from fully nonlinear irregular waves and to compare the results with those obtained from linear wave theory and with stream function wave theory. The latter of these theories is only valid on a flat bed. The three predictions of wave forces are compared and the influence of the bed slope is investigated. Force-profiles of two selected waves from the irregular wave train are further compared with the corresponding force-profiles from stream function theory. The results suggest that the nonlinear irregular waves give rise to larger extreme wave forces than those predicted by linear theory and that a steeper bed slope increases the wave forces both for linear and nonlinear waves. It is further found that stream function theory in some cases underestimate the wave forces acting on the monopile.


1988 ◽  
Vol 1 (21) ◽  
pp. 48 ◽  
Author(s):  
Akira Kimura

The probability distribution of the maximum run of irregular wave height is introduced theoretically. Probability distributions for the 2nd maximum, 3rd maximum and further maximum runs are also introduced. Their statistical properties, including the means and their confidence regions, are applied to the verification of experiments with irregular waves in the realization of a "severe sea state" in the test.


Author(s):  
Guttorm Gryto̸yr

The term ‘riser recoil’ refers to the situation when the lower end of a top tensioned riser is released, and the riser is lifted up by the riser tensioner and/or top motion compensator system on the supporting vessel. The elastic energy stored in the riser is then released, and the riser ‘recoils’. This paper focuses on the case of planned disconnect, and builds on ref. [1] which was based on a simplified riser analysis using a rigid body to represent the riser. In the present paper, the methodology has been applied to an elastic riser model in the riser analysis software RIFLEX, from MARINTEK in Trondheim, Norway, which includes axial damping elements required for modeling of the tensioner systems. Completion and Work Over (CWO) risers are unique in the sense that they may be simultaneously connected to both the riser tensioner system and the top motion compensator system of a drilling vessel. A Marine Drilling riser, on the other hand, is only connected to the riser tensioner system. Typically the riser tensioner system has a stroke of ± 8–9 m, whereas the top motion compensator system has only ± 3.5–4 m. It is imperative that the connector is lifted clear of the subsea structure in order to avoid damage to the equipment after the riser has been disconnected. The operating window for planned disconnect of CWO risers is severely limited by the available stroke of the top motion compensator. One of the purposes of the disconnect analysis is to establish the maximum wave height at which there is still sufficient clearance between the connector and the subsea structure after disconnect. Previous experience has shown that this may be the governing limitation for workover operations. The analysis may also establish a maximum tension level, and seastate, to avoid hard stroke-out of the top motion compensator cylinders. This requires an elastic riser model, since a rigid body will yield unphysically large impulse loads in case of stroke-out. The current industry practice is to use a regular wave approach in the analysis. In accordance with ref. [1], the present analysis is performed with irregular wave analyses. The results are documented through a case study of a typical CWO riser system connected to a semi-submersible in typical North Sea environmental conditions. The semi-submersible and the CWO riser system are exposed to irregular waves. Comparison of the resulting allowable wave height shows that using the approach presented here with an elastic riser model yields less conservative results than the previous methodology with a rigid body model. This should be coupled to the findings with the rigid riser model, ref. [1], that irregular waves yield a considerable increase in the operating window, and the resulting operability, compared to a regular wave analysis. Hence, using a regular wave approach combined with a simplified riser model that neglects the flexibility of the riser is expected to yield overly conservative results for the EQDP elevation after disconnect.


1980 ◽  
Vol 1 (17) ◽  
pp. 34
Author(s):  
G.Z. Forristall ◽  
E.G. Ward ◽  
V.J. Cardone

A realistic description of the kinematics of hurricane waves requires that the directional spectrum of the sea be known. Models for hindcasting the directional spectrum have existed for some time, but there has been a dearth of data available for checking the directional characteristics of the hindcasts. Hurricane Carmen in 1974 and hurricane Eloise in 1975 passed reasonably close to platforms in the Gulf of Mexico which were instrumented with wave staffs and electromagnetic current meters. The maximum recorded significant wave height was 29 feet. The simultaneous measurements of wave height and water particle velocity permitted estimates of the directional spectra to be made. The estimated directional spectra are complicated and often bimodal in frequency and direction. Swell from the center of the storm can propagate in directions over 90 degrees away from the direction of the shorter waves which are in local equilibrium with the wind. The hindcast model reproduces these directional features remarkably well. The measurements of wave kinematics also permitted tests of the accuracy of wave theories in high and confused storm waves. All of the unidirectional theories tested showed a bias toward overpredicting the velocity under the highest waves. However, the kinetic energy in the velocity components and the velocity probability distribution could be found to within a ten percent scatter using directional spectral concepts and linear wave theory.


1982 ◽  
Vol 1 (18) ◽  
pp. 28
Author(s):  
Yu-Cheng Li ◽  
John B. Herbich

The interaction of a gravity wave with a steady uniform current is described in this paper. Numerical calculations of the wave length change by different non-linear wave theories show that errors in the results computed by the linear wave theory are less than 10 percent within the range of 0.15 < d/Ls s 0.40, 0.01 < Hs/Ls < 0.07 and -0.15 < U/Cs i 0.30. Numerical calculations of wave height change employing different wave theories show that errors in the results obtained by the linear wave theory in comparison with the non-linear theories are greater when the opposing relative current and wave steepness become larger. However, within range of the following currents such errors will not be significant. These results were verified by model tests. Nomograms for the modification of wave length and wave height by the linear wave theory and Stokes1 third order theory are presented for a wide range of d/Ls, Hs/Ls and U/C. These nomograms provide the design engineer with a practical guide for estimating wave lengths and heights affected by currents.


2021 ◽  
Vol 9 (12) ◽  
pp. 1355
Author(s):  
Enjin Zhao ◽  
Lin Mu ◽  
Zhaoyang Hu ◽  
Xinqiang Wang ◽  
Junkai Sun ◽  
...  

Revetment elements and protective facilities on a breakwater can effectively weaken the impact of waves. In order to resist storm surges, there is a plan to build a breakwater on the northern shore of Meizhou Bay in Putian City, China. To better design it, considering different environmental conditions, physical and numerical experiments were carried out to accurately study the effects of the breakwater and its auxiliary structures on wave propagation. In the experiments, the influence of the wave type, initial water depth, and the structure of the fence plate are considered. The wave run-up and dissipation, the wave overtopping volume, and the structure stability are analyzed. The results indicate that the breakwater can effectively resist the wave impact, reduce the wave run-up and overtopping, and protect the rear buildings. In addition, under the same still water depth and significant wave height, the amount of overtopped water under regular waves is larger than that under irregular waves. With the increase of the still water depth and significant wave height, the overtopped water increases, which means that when the storm surge occurs, damage on the breakwater under the high tide level is greater than that under the low tide level. Besides, the fence plate can effectively dissipate energy and reduce the overtopping volume by generating eddy current in the cavity. Considering the stability and the energy dissipation capacity of the fence plate, it is suggested that a gap ratio of 50% is reasonable.


1979 ◽  
Vol 94 (1) ◽  
pp. 129-161 ◽  
Author(s):  
J. D. Fenton

A method is outlined by which high-order solutions are obtained for steadily progressing shallow water waves. It is shown that a suitable expansion parameter for these cnoidal wave solutions is the dimensionless wave height divided by the parameter m of the cn functions: this explicitly shows the limitation of the theory to waves in relatively shallow water. The corresponding deep water limitation for Stokes waves is analysed and a modified expansion parameter suggested.Cnoidal wave solutions to fifth order are given so that a steady wave problem with known water depth, wave height and wave period or length may be solved to give expressions for the wave profile and fluid velocities, as well as integral quantities such as wave power and radiation stress. These series solutions seem to exhibit asymptotic behaviour such that there is no gain in including terms beyond fifth order. Results from the present theory are compared with exact numerical results and with experiment. It is concluded that the fifth-order cnoidal theory should be used in preference to fifth-order Stokes wave theory for wavelengths greater than eight times the water depth, when it gives quite accurate results.


1982 ◽  
Vol 1 (18) ◽  
pp. 20
Author(s):  
K.F. Daemrich ◽  
W.D. Eggert ◽  
H. Cordes

This paper deals with the results of hydraulic model investigations of orbital velocities and pressures in irregular waves. Different simulation methods in the time and frequency domain were checked or developed, and the theoretical results compared with measurements. Using simulation methods based on linear wave theory, results with good correlation are obtained, at locations near the water surface, however, a tendency towards over- or underestimation exists.


Sign in / Sign up

Export Citation Format

Share Document