Synergistic Effect of Seawater Environmental Factors on Carbon Steel Corrosion Rate

Author(s):  
Sanam Atashin ◽  
Mahmood Pakshir ◽  
Arash Yazdani

Seawater is an aggressive, very corrosive, complex composition of different minerals covering about 70% of the earth’s surface that affects nearly all structural materials to some extent. Since seawater is a complex solution of many salts with various levels of physical and chemical parameters, the individual effect of each factor affecting the corrosion behavior is not readily separated, as is the case for a simple salt solution and an alteration in one may affect the relative effect magnitude of others, which illustrates the importance of synergistic analysis of dominant parameters. The synergistic effect of environmental factors on corrosion rate of carbon steel (AISI 1045) has been assessed in aerated synthetic seawater, using potentiodynamic polarization scan. The major environmental parameters considered are salinity, velocity, pH and temperature. A quantitative full two-level factorial experimental design method was applied to study the individual contribution percentage of each parameter on changing the average value of corrosion rate, as well as their interactive contributions. Because of the significant weakness of quantitative analysis in description and justification of variation direction the qualitative analysis has been assessed. The results show that the most contribution factor obtained by quantitative analysis is not always the most effective one obtained by qualitative analysis.

2021 ◽  
Vol 1201 (1) ◽  
pp. 012079
Author(s):  
S B Gjertsen ◽  
A Palencsar ◽  
M Seiersten ◽  
T H Hemmingsen

Abstract Models for predicting top-of-line corrosion (TLC) rates on carbon steels are important tools for cost-effectively designing and operating natural gas transportation pipelines. The work presented in this paper is aimed to investigate how the corrosion rates on carbon steel is affected by acids typically present in the transported pipeline fluids. This investigation may contribute to the development of improved models. In a series of experiments, the corrosion rate differences for pure CO2 (carbonic acid) corrosion and pure organic acid corrosion (acetic acid and formic acid) on X65 carbon steel were investigated at starting pH values; 4.5, 5.3, or 6.3. The experiments were conducted in deaerated low-salinity aqueous solutions at atmospheric pressure and temperature of 65 °C. The corrosion rates were evaluated from linear polarization resistance data as well as mass loss and released iron concentration. A correlation between lower pH values and increased corrosion rates was found for the organic acid experiments. However, the pH was not the most critical factor for the rates of carbon steel corrosion in these experiments. The experimental results showed that the type of acid species involved and the concentration of the undissociated acid in the solution influenced the corrosion rates considerably.


REAKTOR ◽  
2017 ◽  
Vol 17 (4) ◽  
pp. 177
Author(s):  
Adhi Setiawan ◽  
Nora Amelia Novitrie ◽  
Agung Nugroho ◽  
W Widiyastuti

The use of biodiesel leads to corrosion of automotive material, which can potentially shorten engine lifetime. The study aims to investigate the effect of temperature and contact time on the corrosion characteristics of carbon steel upon exposure to biodiesel synthesized from used frying oil. The corrosion rate of carbon steel was analyzed based on weight loss measurement according to the standard of ASTM G31 as affected by temperature and contact time. The immersion temperatures used in this study were 30oC, 40oC, and 70o, respectively. The contact times studied were 30 days, 40 days, and 50 days respectively. The results show that the increase of temperature and contact time of biodiesel on carbon steel surface speeds up the corrosion rate. Maximum corrosion rate (0.083 mmy) was observed on the carbon steel contacted to biodiesel at 70oC for 50 days. The SEM results showed an irregular shape of the corroded carbon steel surface. XRD / FTIR analysis of carbon steel samples show the presence of peaks, detected as Fe2O3, FeO(OH) and Fe2O2CO3, as the corrosion products. Keywords: biodiesel; carbon steel; corrosion; FAME; used frying oil


2001 ◽  
Vol 19 (5-6) ◽  
pp. 435-452 ◽  
Author(s):  
L. Maldonado, ◽  
L. Veleva, ◽  
P. Quintana, ◽  
O.T. de Rincón, ◽  
A. Rincón, ◽  
...  

2015 ◽  
Vol 33 (3-4) ◽  
pp. 151-174 ◽  
Author(s):  
Liang Wei ◽  
Yucheng Zhang ◽  
Xiaolu Pang ◽  
Kewei Gao

AbstractCarbon dioxide (CO2) corrosion at low partial pressure has been widely recognized, but research on supercritical CO2 (SC CO2) corrosion is very limited. By far, investigations on steel corrosion under SC CO2 conditions have mainly focused on the corrosion rate, structure, morphology, and composition of the corrosion scales as well as the electrochemical behaviors. It was found in aqueous SC CO2 environment, that the corrosion rate of carbon steel was very high, and even stainless steels (13Cr and high-alloy CrNi steels) were subjected to some corrosion. Inhibitor could reduce the corrosion rate of carbon steels and stainless steels, but none of the tested inhibitors could reduce the corrosion rate of carbon steel to an acceptable value. Impurities such as O2, SO2, and NO2 and their mixtures in SC CO2 increased the corrosion rate of carbon steel. However, the existing studies so far were very limited on the corrosion mechanism of steels in SC CO2 conditions. Thus, this paper first reviews the finding on the corrosion behaviors of steels under SC CO2 conditions, points out the shortcomings in the present investigations and finally looks forward to the research prospects on SC CO2 corrosion.


2002 ◽  
Vol 49 (6) ◽  
pp. 433-443 ◽  
Author(s):  
V.S. Saji ◽  
S.M.A. Shibli

Tungstate inhibitors are seldom used alone in open recirculating cooling water systems due to their low oxidising ability and high cost. The objective of the present work was to develop efficient synergistic inhibitor combinations comprising sodium silicate and very low concentration of sodium tungstate, keeping in view of their application in industrial cooling water system. It was demonstrated in the present study that all the combinations of the inhibitors exhibited synergistic benefit and higher inhibition efficiencies than did either of the individual inhibitors. It was also established that a 4:1 ratio of sodium silicate to sodium tungstate (total 1,000 ppm) was the best overall combination. The FTIR spectra also suggest that tungstate and silicate ions were incorporated in the passivating metal oxide layer formed on the surface of carbon steel in the inhibitor solutions. The effects of excess and depleted concentrations of the individual inhibitor components on overall inhibition behaviour are also discussed.


2013 ◽  
Vol 2 (1) ◽  
pp. 39-42
Author(s):  
KD Upadhya

Mental health is not merely an absence of mental illness. It’s also a relationship between an individual and the society that the individual dwells and all the social process and institutions that a society embodies within. There exist several personal and environmental factors culminating into some form of mental illness. Therefore prevention of these factors helps prevent mental illness or delay their onset for timely intervention. Various public health strategies have genuine implications in day to day life an individual and population at large. The combination of mental health with such public health strategies will have synergistic effect. DOI: http://dx.doi.org/10.3126/jpan.v2i1.8574 J Psychiatrists’ Association of Nepal Vol .2, No.1, 2013 39-42


2018 ◽  
Vol 7 (3) ◽  
pp. 828
Author(s):  
Isdiriayani Nurdin ◽  
R Asri Pratiwi ◽  
Aditya Farhan A ◽  
Fikri Anggara P ◽  
Rennie Sari

Inhibitor addition is one of the common corrosion control methods. Potassium metavanadate (KVO3) is the common corrosion inhibitor for Benfield solution in CO2 absorber. Former research shows that KVO3 is also able to inhibit the corrosion in seawater containing Sulphate Reducing Bacteria (SRB) due to its capacity as biocide. Chloride and Sulfide are common corrosive ions found in process fluids in industries. Therefore, this research is carried out to study the performance of KVO3 as a corrosion inhibitor for low- carbon steel in chloride and sulfide contaminated environment. The objective of this research was achieved by measuring low-carbon steel corrosion rate in various concentrations of contaminants. The corrosion rate was measured by Tafel method. The corrosion inhibition mechanisms were studied using cyclic voltammetry method. Meanwhile the corrosion products were identified by X - ray diffraction spectrometry (XRD). This research results that KVO3 is an effective corrosion inhibitor in chloride environment when the chloride concentration ranges between 20 g/L and 30 g/L. In this range of concentration, KVO3 performs more than 99% efficiency. While in sulfide environment, KVO3 is an ineffective corrosion inhibitor. On the other hand, the addition of KVO3 reduces the corrosion rate of carbon steel in seawater containing sulfide, although its performance does not meet the effective inhibitor criteria. Higher concentration of sulfide results the higher inhibition efficiency of KVO3.Keywords: Potassium metavanadate, low - carbon steel, corrosion inhibitor AbstrakPenambahan inhibitor merupakan salah satu metode pengendalian korosi. Kalium metavanadat (KVO3) sering digunakan sebagai inhibitor korosi pada absorber CO2 yang menggunakan larutan Benfield. Hasil penelitian sebelumnya menunjukkan bahwa KVO3 mampu menginhibisi korosi baja karbon rendah dalam air laut yang mengandung bakteri pereduksi sulfat (SRB) dengan bertindak sebagai biosida. Klorida dan sulfida merupakan ion-ion korosif yang umum ditemui dalam fluida proses di industri. Penelitian ini dilakukan untuk mempelajari kinerja KVO3 sebagai inhibitor korosi baja karbon rendah dalam lingkungan akuatik yang terkontaminasi klorida, ataupun sulfida. Untuk mencapai tujuan tersebut dilakukan pengukuran laju korosi baja karbon rendah dengan jenis dan konsentrasi kontaminan bervariasi. Pengukuran laju korosi dilakukan dengan metode Tafel. Mekanisme inhibisi diprediksi dengan metode voltametri siklik. Sedangkan produk korosi diidentifikasi dengan menggunakan spektrometri difraksi sinar X (XRD). Dari penelitian ini, diperoleh hasil bahwa KVO3 efektif sebagai inhibitor korosi baja karbon rendah pada lingkungan klorida berkonsentrasi antara 20 g/L hingga 30 g/L dengan efisiensi di atas 99%. Pada lingkungan sulfida, KVO3 kurang efektif menginhibisi korosi baja karbon rendah. Sedangkan pada air laut sintetik yang mengandung sulfida, walaupun belum termasuk kategori inhibitor efektif, namun KVO3 dapat menurunkan laju korosi baja karbon dengan efisiensi inhibisi yang meningkat seiring dengan kenaikan konsentrasi sulfida.Kata kunci: kalium metavanadat, baja karbon rendah, inhibitor korosi


2013 ◽  
Vol 652-654 ◽  
pp. 963-966
Author(s):  
Amy Wahida Mohamad Sa'adan ◽  
Madzlan Aziz ◽  
Rita Sundari

This study investigated carbon steel corrosion in three types of soil media (laterite, yellow soil and kaolin). The Frumkin isotherm was used to study the mechanism of the corrosion process. A good linear correlation (y = 3.4x + 3.3) in terms of soil concentration vs. surface coverage was obtained with the value of R2 = 0.996 for carbon steel corrosion in laterite solution at 30oC. A standard weight loss method was used to determine the degree of surface coverage. Investigation on corrosion rate was also carried out on the basis of immersion time and temperature effects. The results showed that yellow soil solution yielded the highest corrosion rate on carbon steel coupon for 5 consecutive days and at various temperatures (30 – 90oC). The thermodynamic properties in terms of heat of reaction and entropy were also investigated in this corrosion study. The results showed that carbon steel coupon was least corroded in the environment of kaolin solution as indicated by its highest endothermic value and lowest entropy. The study showed that the findings are consistent in relation to thermodynamic properties. This work is beneficial for the corrosion study of carbon steel in soil media corresponding to lifetime of buried pipelines and cost safety.


Sign in / Sign up

Export Citation Format

Share Document