Assessment of Lateral Buckles in a HP/HT Pipeline Using Sidescan Sonar Data

Author(s):  
Alexandre Santos Hansen ◽  
Bruno Reis Antunes ◽  
Rafael Familiar Solano ◽  
Graeme Roberts ◽  
Arek Bedrossian

During design stage of high pressure/high temperature pipelines, some conservative parameters are adopted along with sensitivity analyses to assure safe operation in the presence of uncertainties that influence buckle formation, e.g. pipe-soil interaction, as-laid out-of-straightness and initial heat-up. After operation starts and lateral buckles appeared along the line, a survey may provide valuable information regarding confirmation of the design assumptions, evaluation of actual behaviour and the possibility of increase the operating conditions. This work presents the methodology applied to analyse the configuration of the P-53/PRA-1 12″ oil export pipeline in operation using data from a sidescan sonar survey. The aim of such analyses was to gather information for an FE model calibration as well as to obtain preliminary estimates for the bending strains at lateral buckling locations. Special attention was dedicated to smoothing and interpolation of the pipeline coordinates extracted from sonar imagery in order to avoid unrealistic strains estimates.

Author(s):  
Alexander N. Arkhipov ◽  
Vladimir V. Karaban ◽  
Igor V. Putchkov ◽  
Guenter Filkorn ◽  
Andreas Kieninger

The evaluation of the blading clearance at the design stage is important for heavy duty gas turbine efficiency. The minimum clearance value at base load is limited by the pinch point clearance during startup and/or shutdown. Therefore, transient analysis is necessary for different operating conditions. 3D transient analysis of a whole engine is labor-intensive; however 2D axisymmetric analysis does not allow consideration of different 3D effects (e.g. twisting, bending, ovality, rotor alignment). In order to overcome these cost and time limitations, the combination of 2D, axisymmetric, whole-engine model results and the scaled deflections caused by different 3D effects is used for the axial and radial clearance engineering assessment during engine operation. The basic rotor and stator closures are taken from the transient analysis using a 2D finite element (FE) model composed of axisymmetric solid and plane stress elements. To take into account 3D effects of airfoil twisting and bending, the 3D FE displacements of the blade are included in the clearance evaluation process. The relative displacements of airfoil tip and reference point at the blade or vane hub are taken from 3D steady-state FE analyses. Then the steady-state displacements of the airfoils are scaled for transient conditions using the proposed technique. Different 3D rotor / stator effects (cold-build clearances and their tolerances, rotor position with respect to stator after assembly, casing bending, deformations of compressor and turbine vane carrier inducing of casing ovalization, exhaust gas housing movements, movements of the rotor in bearings and CVC and TVC support, etc.) are also included as a contributor to the clearances. The results of the calculations are analyzed and compared with good agreements to the clearances measured in engine testing under real operation conditions. The proposed methodology allows assessing the operating clearances between the stator and rotor during the design phase. Optimization of the running clearance is one key measure to upgrade and improve the engine performance during operating experience.


2004 ◽  
Author(s):  
Kai Sun ◽  
Boyun Guo ◽  
Ali Ghalambor

Well casings and pipelines in the petroleum industry are subject to severe corrosion because of their exposure to seawater and corrosive fluids that are transported. Corrosion develops pits and cavities at the surface of these structures. Under operating conditions, stress concentration around the cavities determines strength degradation of the structures. The strength deterioration can significantly shorten the life; even cause failure of the structure if this effect is not considered during the design stage. It is highly desirable to know the stress concentration factor (SCF) for both designing and evaluating tubular structures. Despite the rapid development of various numerical methods such as the finite element method, SCF analysis with any numerical method is still a tedious and time-consuming task for ordinary engineers. This paper derives simple formulae for SCF around cavities of various geometries at the surface of tubular structures. The cavity geometries considered include shallow-spherical (depth is less than the open radius), medium-spherical (depth is equal to the open radius), and deep-spherical (depth is greater than the open radius) cavities. SCF graphs are generated and results of sensitivity analyses are presented in this paper. These SCF formulae and graphs can be used in both designing and evaluating tubular structures with spherical cavities.


Author(s):  
Manuela Gentile ◽  
Ciro Antonio Laudonia ◽  
Lorenzo Marchionni ◽  
Antonio Parrella ◽  
Roberta Vichi ◽  
...  

The management of the flow availability in presence of corrosive fluids may considerably impact on CAPEX and OPEX of offshore pipelines. A correct approach starts from the preliminary phases of a project, with the selection of the most appropriate material in relation to the nature of the corrosive fluids and expected degradation mechanisms (i.e. general corrosion, localized or mesa corrosion and pitting). The construction phases include measures that allow meeting welding requirements and safe guarding the integrity of the line-pipe. The operation shall account for the control of process parameters and transported fluid composition. In the upcoming future offshore pipeline and field development projects, challenging operating conditions in deep/ultra-deep waters means that increasingly careful considerations on the effect of metal loss: corrosion leading to local loss of material may cause a potential pipeline failure under the additional effect of functional and environmental loads, in particular the high external pressure and applied bending moment. The assessment of the structural integrity depends on the type and accuracy of available measurements. In presence of corrosion patterns and accordingly to existing standards (DNV RP-F101, ASME B31G, API 579, BS 7910) the assessment might be unduly conservative; further the presence of important combined loads is not fully covered by standard assessment format. The use of FEM numerical lab can help the evaluation of the residual strength and deformation capacity of the pipeline affected by corrosion, leading to a quite-deterministic characterization of pipeline strength capacity at design stage and in operation. Several studies (both theoretical and experimental) available in the open literature faced this issue and their findings support the proposed analysis methodology. Recently full scale tests have been conducted by the relevant Oil & Gas industry companies (such as Statoil and ENI) and the obtained results have been used for the FE Model calibration and validation of corroded pipelines. Herein an application is presented in order to understand and appreciate the proposed methodology performance in corroded pipeline assessment.


Author(s):  
Nishesh Jain ◽  
Esfand Burman ◽  
Dejan Mumovic ◽  
Mike Davies

To manage the concerns regarding the energy performance gap in buildings, a structured and longitudinal performance assessment of buildings, covering design through to operation, is necessary. Modelling can form an integral part of this process by ensuring that a good practice design stage modelling is followed by an ongoing evaluation of operational stage performance using a robust calibration protocol. In this paper, we demonstrate, via a case study of an office building, how a good practice design stage model can be fine-tuned for operational stage using a new framework that helps validate the causes for deviations of actual performance from design intents. This paper maps the modelling based process of tracking building performance from design to operation, identifying the various types of performance gaps. Further, during the operational stage, the framework provides a systematic way to separate the effect of (i) operating conditions that are driven by the building’s actual function and occupancy as compared with the design assumptions, and (ii) the effect of potential technical issues that cause underperformance. As the identification of issues is based on energy modelling, the process requires use of advanced and well-documented simulation tools. The paper concludes with providing an outline of the software platform requirements needed to generate robust design models and their calibration for operational performance assessments. Practical application The paper’s findings are a useful guide for building industry professionals to manage the performance gap with appropriate accuracy through a robust methodology in an easy to use workflow. The methodological framework to analyse building energy performance in-use links best practice design stage modelling guidance with a robust operational stage investigation. It helps designers, contractors, building managers and other stakeholders with an understanding of procedures to follow to undertake an effective measurement and verification exercise.


2021 ◽  
Author(s):  
Rakshith Naik ◽  
Yetzirah Urthaler ◽  
Scot McNeill ◽  
Rafik Boubenider

Abstract Certain subsea jumper design features coupled with operating conditions can lead to Flow Induced Vibration (FIV) of subsea jumpers. Excessive FIV can result in accumulation of allowable fatigue damage prior to the end of jumper service life. For this reason, an extensive FIV management program was instated for a large development in the Gulf of Mexico (GOM) where FIV had been observed. The program consisted of in-situ measurement, modeling and analysis. Selected well and flowline jumpers were outfitted with subsea instrumentation for dedicated vibration testing. Finite Element (FE) models were developed for each jumper and refined to match the dynamic properties extracted from the measured data. Fatigue analysis was then carried out using the refined FE model and measured response data. If warranted by the analysis results, action was taken to mitigate the deleterious effects of FIV. Details on modeling and data analysis were published in [5]. Herein, we focus on the overall findings and lessons learned over the duration of the program. The following topics from the program are discussed in detail: 1. In-situ vibration measurement 2. Overall vibration trends with flow rate and lack of correlation of FIV to flow intensity (rho-v-squared); 3. Vibration and fatigue performance of flowline jumpers vs. well jumpers 4. Fatigue analysis conservatism Reliance on screening calculations or predictive FE analysis could lead to overly conservative operational limits or a high degree of fatigue life uncertainty in conditions vulnerable to FIV. It is proposed that in-situ vibration measurements followed by analysis of the measured data in alignment with operating conditions is the best practice to obtain a realistic understanding of subsea jumper integrity to ensure safe and reliable operation of the subsea system. The findings from the FIV management program provide valuable insight for the subsea industry, particularly in the areas of integrity management of in-service subsea jumpers; in-situ instrumentation and vibration measurements and limitations associated with predictive analysis of jumper FIV. If learnings, such as those discussed here, are fed back into design, analysis and monitoring guidelines for subsea equipment, the understanding and management of FIV could be dramatically enhanced compared to the current industry practice.


2021 ◽  
Author(s):  
Charles Okafor ◽  
Patrick Verdin ◽  
Phill Hart

Abstract Downhole Natural Gas Separation Efficiency (NGSE) is flow regime dependent, and current analytical models in certain conditions lack accuracy. Downhole NGSE was investigated through 3D Computational Fluid Dynamics (CFD) transient simulations for pumping wells in the Churn flow regime. The Volume of Fluid (VOF) multiphase model was considered along with the k – ε turbulence model for most simulations. A mesh independence study was performed, and the final model results validated against experimental data, showing an average error of less than 6 %. Numerical simulation results showed that the steady state assumption used by current mathematical models for churn flow can be inaccurate. Several key parameters affecting the NGSE were identified, and suggestions for key improvements to the widely used mathematical formulations for viscous flow provided. Sensitivity studies were conducted on fluid/geometric parameters and operating conditions, to gain a better understanding of the influence of each parameter on NGSE. These are important results as they equip the ESP engineer with additional knowledge to maximise the NGSE from design stage to pumping operations.


Author(s):  
David Hemberger ◽  
Dietmar Filsinger ◽  
Hans-Jörg Bauer

Next to excitation forces and the dynamic properties of mistuned structures the damping behavior is a key feature to evaluate the dynamic turbine blade response and thus the HCF life of a bladed disk (blisk). Just as the determination of the mistuning properties and the assessment of the vibration excitation, the evaluation of damping is also subject to uncertainty especially considering the wide operating range of a small radial turbine of a turbocharger. Since the total damping is composed of material damping, structural damping and aerodynamic damping, which are affected by parameters, like the eigenform of the vibration, the magnitude of the vibration amplitude and aerodynamic properties, the total damping can be strongly dependent on the operating conditions. The study at hand provides results from investigations that allow estimating the contribution of aerodynamic damping on the total damping. Experimental and numerical analysis of radial turbines from turbochargers for vehicular engines with variable turbine inlet vanes were performed. Measurements under different environmental conditions such as at rest and during operation, as well as unsteady CFD calculations and, coupled flow and structural calculations were carried out. A change in total damping could be found depending on the density of the surrounding gas by vibration measurements in operation on the hot gas test bench. But it was also shown that the total damping is decisively influenced by the mistuning of the structure. On one side the structural damping is varied by the variation in mistuned blade vibration amplitudes and otherwise the aerodynamic damping is influenced by the different inter blade phase angles (IBPA ) due to the mistuning, which is a symptom of geometric differences and material inhomogeneity in the wheels. Finally, the estimated total damping values were utilized in forced response calculations using a mistuned FE-model of a real turbine and excitation forces from unsteady CFD calculation. The magnitudes of the measured vibration amplitudes were compared with results from numerical analysis to validate the numerical model with focus on the investigation about the total damping. The deviation between the results was ±10% for different eigenforms and excitation orders.


Author(s):  
Adam Kozakiewicz ◽  
Stanislaw Jóźwiak ◽  
Przemysław Jóźwiak ◽  
Stanisław Kachel

The structural and strength analysis of the material used to construct such an important engine element as the turbine is of great significance, both at the design stage as well as during tests and expertises related to emergency situations. Bearing in mind the conditions above mentioned, the paper presents the results of research on the chemical composition, morphology and phased structure of the metallic construction material used to produce the blades of the high and low pressure turbine of the RD-33 jet engine, which is the propulsion unit of the MiG-29 aircraft. The data obtained as a result of the material tests of the blades allowed, on the basis of the analysis of chemical composition and phased structure, to determine the grade of the alloy used to construct the tested elements of the jet engine turbine. The structural stability of the material was found to be lower in comparison with engine operating conditions, which manifested itself as a clear decrease in the resistance properties of the blade material. The results obtained can be used as a basis for analyzing the life span of an object or a selection of material replacements, which enable to produce the analyzed engine element.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


Sign in / Sign up

Export Citation Format

Share Document