Experimental Study on Fatigue Strength of Small-Diameter Socket-Welded Pipe Joints

1998 ◽  
Vol 120 (2) ◽  
pp. 149-156 ◽  
Author(s):  
M. Higuchi ◽  
A. Nakagawa ◽  
K. Iida ◽  
M. Hayashi ◽  
T. Yamauchi ◽  
...  

The authors conducted fully reversed four-point bending fatigue tests on socket-welded joints 20 to 50 mm in nominal diameter, and rotating bending fatigue tests on socket-welded joints 20 mm in nominal diameter. S-N curves for 33 series of different types of specimens were obtained. Examination was made of the effects of various parameters listed in the forthcoming on fatigue strength such as steel types (carbon and stainless steels), diameter, pipe thickness (Sch), fillet shape, slip-on gap, and root defects. Bending fatigue test results indicated fatigue strength for socket-welded joints to be less for longer life regions than reported in the literature by Markl and George (1950). Fatigue strength for socket joints of 50 mm nominal diameter at 107 cycles of fatigue life was 46 MPa for carbon steel and 60 MPa for stainless steel with nominal bending stress on the pipe surface. Cracks generally originated from the toe when stress amplitude was high with shorter fatigue life and from the root when amplitude was small with longer life. Fatigue strength was greater for smaller diameter, larger Sch (thicker pipe wall), final welding pass on the toe of pipe side, and in the absence of a slip-on gap. From fatigue test results of socket joints with weld defects at the roots, an empirical equation for the relation of defect size with decrease in fatigue strength was established. Fatigue strength was found to decrease to 60 percent the original level for defect size 25 percent of leg length.

2016 ◽  
Vol 62 (1) ◽  
pp. 83-98 ◽  
Author(s):  
A. Szydło ◽  
K. Malicki

Abstract The bonding state of the asphalt layers in a road pavement structure significantly affects its fatigue life. These bondings, therefore, require detailed tests and optimization. In this paper, the analyses of the correlation between the results of laboratory static tests and the results of fatigue tests of asphalt mixture interlayer bondings were performed. The existence of the relationships between selected parameters was confirmed. In the future, the results of these analyses may allow for assessment of interlayer bondings’ fatigue life based on the results of quick and relatively easy static tests.


Author(s):  
Hiroko Oosedo ◽  
Koji Takahashi ◽  
Kotoji Ando

The effects of overload on the fatigue strength and threshold stress intensity factor range (ΔKth) in SUS316 were studied. Tensile overload was applied to compact tension (CT) specimens with a large crack and fatigue tests were carried out to determine the ΔKth. Tensile or compressive overload was applied to bending fatigue test specimens with a small crack-like surface defect and fatigue tests were carried out to determine the fatigue limit and ΔKth. It was found that the ΔKth increased by tensile overloading. The increasing rate of ΔKth in the CT specimen is larger than that in the bending fatigue test specimen. Thus, the crack size effects on the improvement of ΔKth after overloading were observed. The results are discussed from the viewpoint of fracture mechanics. The size of compressive residual stress is the key factor of the increasing rate.


Author(s):  
Carol Johnston

The offshore environment contains many sources of cyclic loading. Standard design S-N curves, such as those in DNVGL-RP-C203, are usually assigned to ensure a particular design life can be achieved for a particular set of anticipated loading conditions. Girth welds are often the ‘weak link’ in terms of fatigue strength and so it is important to show that girth welds made using new procedures for new projects that are intended to be used in fatigue sensitive risers or flowlines do indeed have the required fatigue performance. Alternatively, designers of new subsea connectors, used for example in tendons for tension leg platforms, mooring applications or well-heads which will experience cyclic loading in service, also wish to verify the fatigue performance of their new designs. Often operators require contractors to carry out resonance fatigue tests on representative girth welds in order to show that girth welds made using new procedures qualify to the required design S-N curve. Operators and contractors must then interpret the results, which is not necessarily straightforward if the fatigue lives are lower than expected. Many factors influence a component’s fatigue strength so there is usually scatter in results obtained when a number of fatigue tests are carried out on real, production standard components. This scatter means that it is important first to carry out the right number of tests in order to obtain a reasonable understanding of the component’s fatigue strength, and then to interpret the fatigue test results properly. A working knowledge of statistics is necessary for both specifying the test programme and interpreting the test results and there is often confusion over various aspects of test specification and interpretation. This paper describes relevant statistical concepts in a way that is accessible to non-experts and that can be used, practically, by designers. The paper illustrates the statistical analysis of test data with examples of the ‘target life’ approach (that is now included in BS7608:2014 + A1) and the equivalent approach in DNVGL-RP-C203, which uses the stress modification factor. It gives practical examples to designers of a pragmatic method that can be used when specifying test programmes and interpreting the results obtained from tests carried out during qualification programmes, which for example, aim to determine whether girth welds made using a new procedure qualify to a particular design curve. It will help designers who are tasked with specifying test programmes to choose a reasonable number of test specimens and stress ranges, and to understand the outcome when results have been obtained.


Author(s):  
Luis Lopez Martinez ◽  
Zuheir Barsoum ◽  
Anna Paradowska

The use of fatigue life improvement techniques and specifically ultrasonic peening treatment to extend the service life of offshore structures has become an accepted practice during the last five years. The understanding of the process as well as equipment’s upgrading for treatment in-situ including quality control and assurance have been developed up to a level that it has become a current practice in many parts of the world. However, the efficiency of the ultrasonic peening is strictly dependent on the deep understanding of significant fatigue parameters as weld defects, stress concentrations and residual stresses and their interaction. In this paper we attempt to present the current knowledge and the physical reasons why the ultrasonic peening treatment is able to improve the fatigue life of welded joints. The local weld geometry or stress concentration, weld imperfections as well as welding residual stresses are all modified and improved by the application of ultrasonic peening. Local weld geometry and weld process inherent weld imperfections are the factors primarily influencing the fatigue strength in welded joints. Comprehensive studies have been carried out during the last 20 years in order to detect and document the weld defects as well as to understand their origin and effect on the fatigue strength of welds. Analogous efforts have been dedicated to understand and document the influence of local weld geometries on the stress concentrations and its influence on endurance and structural integrity. Similarly, efforts have been done to understand the influence of the relaxation by external loads of the by the ultrasonic peening treatment induced compressive stresses. Fatigue test results of ultrasonic peening treated relevant weld details have been used to assess the potential life extension. The results showed four to six times fatigue life extension. The spectrum fatigue test was designed to confirm that relaxation by service loads of the induced compressive stresses during ultrasonic peening treatment would not diminish the benefit.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Juraj Belan ◽  
Lenka Kuchariková ◽  
Eva Tillová ◽  
Mária Chalupová

A polycrystalline alpha-beta TiAl6V4 alloy in the annealed condition was used for the three-point bending fatigue test at frequency f∼100 Hz. The static preload Fstat. = −15 kN and variable dynamic force Fdyn. = −7 kN to −13.5 kN were set as fatigue test loading parameters. The fatigue life S-N curve presented the stress amplitude σa as a function of a number of cycles to fracture Nf. A limiting number of cycles to run out of 2.0 × 107 cycles were chosen for the 3-point fatigue tests of rectangular specimens. In addition, the Smith diagram was used to predict the fatigue life. The alpha lamellae width has a significant influence on fatigue life. It is assumed that the increasing width of alpha lamellae decreases fatigue life. A comparison of fatigue results with given alpha lamellae width in our material to the results of other researchers was performed. The SEM fractography was performed with an accent to reveal the initiation sites of crack at low and high load stresses and mechanism of crack propagation for the fatigue part of fracture.


2008 ◽  
Vol 580-582 ◽  
pp. 621-624
Author(s):  
Bok Kyu Lim

The light weight components, crucial in automobiles and machinery, is require hight strength. Mach peening process is one of many of techniques utilized for improving fatigue properties. From the results of rotary bending fatigue tests, the fatigue strength increases up to 129% in mach peening specimen compared with un-peening. A layer of highly compressed residual stress is obtained by mach peening. The compressive residual stress, induced by mach peening, seems to be an important factor for increasing the fatigue strength.


Author(s):  
Alexandra Lacombe ◽  
Yann Landon ◽  
Manuel Paredes ◽  
Clément Chirol ◽  
Audrey Benaben

AbstractFatigue strengths of aluminium 2024-T351 open-hole specimens drilled by axial and orbital drilling processes are compared. Two drilling diameters (Ø) are studied: 6.35 mm and 9.53 mm. Surface integrity characterization tests are conducted in order to study the link between drilling processes, surface integrity and fatigue life. Fatigue test results show an increase of the fatigue life for specimens drilled by axial drilling for Ø = 9.53 mm and no significant difference in fatigue life between the two drilling processes for Ø = 6.35 mm. Surface integrity results show no impact of the roughness on the fatigue strength but a potential positive influence of the hole microhardness on the fatigue life.


2018 ◽  
Vol 165 ◽  
pp. 22020
Author(s):  
Mohamed Sadek ◽  
Jens Bergström ◽  
Nils Hallbäck ◽  
Christer Burman

The 20 kHz load frequency enables fatigue tests for very high cycle fatigue life, 109-1013 cycles, within conveniently short time. In automotive applications, many components are subjected to flexural loading and hence bending fatigue is an important test mode. Ultrasound fatigue test instruments have been used successfully in several assessments of fatigue strength and more commonly in uniaxial loading. Here, a 3-point bending fatigue test rig operating in resonance at 20 kHz load frequency has been designed to test plane specimens at R=0.1 loading. The test rig design and stress calculations are presented. Testing for fatigue strength was conducted using the staircase method with 15 specimens of each steel grade, specimens reaching 108 cycles were considered run-outs giving fatigue strength at 108 cycles. Additional 15 specimens of each grade were tested for S-N curves with the upper limit above 109 cycles. Two different common automotive steels, 38MnSiV5, a micro-alloyed ferritic-pearlitic steel, and 16MnCr5, a carburizing martensitic steel, were tested. The fatigue strengths achieved from the staircase testing are 340 and 419 MPa stress amplitudes for the 38MnSiV5 and 16MnCr5 steels, respectively. The S-N curves of the steels appear to be quite flat in the tested life range 107 – 109.


2014 ◽  
Vol 223 ◽  
pp. 11-18 ◽  
Author(s):  
Robert Sołtysiak

This paper presents the results of the fatigue tests carried out on laser welded joints of DUPLEX 2205 steel (X2CrNiMoN22-5-3 according to PN-EN 10027-1:2007). The butt-welded joints were made using an Nd-YAG disk laser with no filler for two different welding parameters. The parameters were selected based on previous tests (according to PN-EN ISO 15614-11: 2005) conducted for joints made with more than ten welding parameters.The tests carried out provided a basis for the determination of optimum parameters for laser welding of DUPLEX 2205 steel in terms of fatigue life. Additionally, the fatigue test results were related to the fatigue life of samples taken from the parent material.


2006 ◽  
Vol 326-328 ◽  
pp. 987-990 ◽  
Author(s):  
Duck Hoi Kim ◽  
Jae Hoon Kim ◽  
Gi Gwang Kim ◽  
Young Shin Lee

The most common mode of the gear failure is tooth breakage, which is usually produced by bending fatigue failure. It is important to manufacture the gears which can withstand the applied stresses in view of safety and economic requirements. In this study, fatigue test and analysis were performed to evaluate the bending fatigue strength of an automotive bevel gear. Test fixtures of the double tooth concept were considered to obtain reliable fatigue test results. Fatigue life of automotive bevel gear was evaluated by Weibull analysis. To compare the test results and to verify the fatigue analysis procedures, fatigue analyses were carried out. The results of fatigue analysis show that fatigue life and crack initiation sites were well agreed with test results. The random loading of bevel gear under the real driving conditions was defined here, and then the fatigue analysis under random loading was also performed.


Sign in / Sign up

Export Citation Format

Share Document