A Comprehensive Approach for Assessing the Impacts of Wettability on Oil Production in Carbonate Reservoirs

Author(s):  
Marcos Faerstein ◽  
Paulo Couto ◽  
José Alves

This paper discusses the impacts that rock wettability may have upon the production and recovery of oil with waterflooding in carbonate reservoirs and how it should be modeled. A broad review of the state of the art has been conducted surveying existing disagreements and knowledge gaps, basic definitions, as well as the correct understanding of the physical phenomena and identification of the characteristics of the various wettability scenarios. Case studies conducted with a black oil reservoir simulator evaluated the impact of different wettability scenarios on oil production and recovery. A comprehensive approach considering all the parameters involved in the wettability modeling was applied to the case studies, showing how the behavior of the reservoir varies as a function of their wettability. This paper shows how relative permeability and capillary pressure should be varied to correctly represent different wettability scenarios and consequently assess its impacts on oil production and recovery. The case studies show that the evaluation of the volume of oil in the reservoir is impacted by wettability through the irreducible water saturation and primary drainage capillary pressure and must be considered in the analyses. In long term analyses, mixed-wet scenarios have a higher oil production and recovery. In medium and short term, the water-wet scenarios have the higher recovery, but in relation to oil production, these scenarios are negatively influenced by the smaller volume of oil in place. The main contribution of this paper is the simultaneous analyses of all the parameters involved in the modeling of wettability showing how they impact the behavior of a reservoir. It shows how the parameters must be varied in a heterogeneous reservoir and how heterogeneity impacts the relevance of wettability in the studies.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6323
Author(s):  
Xiaoping Li ◽  
Shudong Liu ◽  
Ji Li ◽  
Xiaohua Tan ◽  
Yilong Li ◽  
...  

Apparent gas permeability (AGP) is a significantly important parameter for productivity prediction and reservoir simulation. However, the influence of multiscale effect and irreducible water distribution on gas transport is neglected in most of the existing AGP models, which will overestimate gas transport capacity. Therefore, an AGP model coupling multiple mechanisms is established to investigate gas transport in multiscale shale matrix. First, AGP models of organic matrix (ORM) and inorganic matrix (IOM) have been developed respectively, and the AGP model for shale matrix is derived by coupling AGP models for two types of matrix. Multiple effects such as real gas effect, multiscale effect, porous deformation, irreducible water saturation and gas ab-/de-sorption are considered in the proposed model. Second, sensitive analysis indicates that pore size, pressure, porous deformation and irreducible water have significant impact on AGP. Finally, effective pore size distribution (PSD) and AGP under different water saturation of Balic shale sample are obtained based on proposed AGP model. Under comprehensive impact of multiple mechanisms, AGP of shale matrix exhibits shape of approximate “V” as pressure decrease. The presence of irreducible water leads to decrease of AGP. At low water saturation, irreducible water occupies small inorganic pores preferentially, and AGP decreases with small amplitude. The proposed model considers the impact of multiple mechanisms comprehensively, which is more suitable to the actual shale reservoir.


2005 ◽  
Vol 127 (3) ◽  
pp. 240-247 ◽  
Author(s):  
D. Brant Bennion ◽  
F. Brent Thomas

Very low in situ permeability gas reservoirs (Kgas<0.1mD) are very common and represent a major portion of the current exploitation market for unconventional gas production. Many of these reservoirs exist regionally in Canada and the United States and also on a worldwide basis. A considerable fraction of these formations appear to exist in a state of noncapillary equilibrium (abnormally low initial water saturation given the pore geometry and capillary pressure characteristics of the rock). These reservoirs have many unique challenges associated with the drilling and completion practices required in order to obtain economic production rates. Formation damage mechanisms affecting these very low permeability gas reservoirs, with a particular emphasis on relative permeability and capillary pressure effects (phase trapping) will be discussed in this article. Examples of reservoirs prone to these types of problems will be reviewed, and techniques which can be used to minimize the impact of formation damage on the productivity of tight gas reservoirs of this type will be presented.


2000 ◽  
Vol 40 (1) ◽  
pp. 355
Author(s):  
C.J. Shield

Water saturation (Sw) values calculated from resistivity or induction logs are often higher than those measured from core-derived capillary pressure (Pc) measurements. The core-derived Sw measurements are commonly applied for reservoir simulation in preference to the log-derived Sw calculations. As it is economically and logistically impractical to core every hydrocarbon reservoir, a method of correlating the core-derived Sw to resistivity/induction logs is required. Two-dimensional resistivity modelling is applied to dual laterolog data to ascertain the applicability of this technique.The Griffin and Scindian/Chinook Fields, offshore Western Australia, have been producing hydrocarbons since 1994 from two early-to-middle Cretaceous reservoirs, the clean quartzose sandstones of the Zeepaard Formation and the overlying glauconitic, quartzose sandstones of the Birdrong Formation. Routine and special core analysis of cores recovered from wells intersecting these two reservoirs creates an excellent data set with which to correlate the good quality wireline log data.A strong relationship is noted between the modelled water saturation from resistivity logs, and the irreducible water saturation measured from core capillary pressure data. Correlation between the core-derived permeability and the invasion diameter calculated from the modelled laterolog data is shown to produce a locally applicable means of estimating permeability from the resistivity modelling results.The evaluation of these data from the Griffin and Scindian/Chinook Fields provides a method for reducing appraisal and development well analysis costs, through the closer integration of core and wireline log data at an earlier stage of the field appraisal phase.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. D209-D227 ◽  
Author(s):  
Zoya Heidari ◽  
Carlos Torres-Verdín

Nonmiscible fluid displacement without salt exchange takes place when oil-base mud (OBM) invades connate water-saturated rocks. This is a favorable condition for the estimation of dynamic petrophysical properties, including saturation-dependent capillary pressure. We developed and successfully tested a new method to estimate porosity, fluid saturation, permeability, capillary pressure, and relative permeability of water-bearing sands invaded with OBM from multiple borehole geophysical measurements. The estimation method simulates the process of mud-filtrate invasion to calculate the corresponding radial distribution of water saturation. Porosity, permeability, capillary pressure, and relative permeability are iteratively adjusted in the simulation of invasion until density, photoelectric factor, neutron porosity, and apparent resistivity logs are accurately reproduced with numerical simulations that honor the postinvasion radial distribution of water saturation. Examples of application include oil- and gas-bearing reservoirs that exhibit a complete capillary fluid transition between water at the bottom and hydrocarbon at irreducible water saturation at the top. We show that the estimated dynamic petrophysical properties in the water-bearing portion of the reservoir are in agreement with vertical variations of water saturation above the free water-hydrocarbon contact, thereby validating our estimation method. Additionally, it is shown that the radial distribution of water saturation inferred from apparent resistivity and nuclear logs can be used for fluid-substitution analysis of acoustic compressional and shear logs.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. MR15-MR34 ◽  
Author(s):  
Dawid Szewczyk ◽  
Rune M. Holt ◽  
Andreas Bauer

Previous studies found a significant increase of acoustic velocities between seismic and ultrasonic frequencies (seismic dispersion) for shales, which would have to be taken into account when comparing seismic or sonic field data with ultrasonic measurements in the laboratory. We have executed a series of experiments performed with a partially saturated Mancos shale and a Pierre shale I in which the influence of water saturation on acoustic velocities and seismic dispersion was investigated. The experiments were carried out in a triaxial setup allowing for combined measurements of quasistatic rock deformation, ultrasonic velocities, and dynamic elastic stiffness at seismic frequencies under deviatoric stresses. Prior to testing, the rock samples were preconditioned in desiccators at different relative humidities. For both shale types, we present and analyze the experimental results that demonstrate strong saturation and frequency dependence of dynamic Young’s moduli, Poisson’s ratios, and Thomsen’s anisotropy parameters, as well as P- and S-wave velocities at seismic and ultrasonic frequencies. The observed effects can be attributed to water adsorption and capillary pressure that are functions of several factors including water saturation. Water adsorption results in a reduction of surface energy and grain-contact stiffness. The capillary pressure affects the effective stress and possibly also the effective pore-fluid modulus, which may be approximated by Brie’s empirical model. Reasonable fits to the low-frequency seismic data are obtained by accounting for these two effects and applying the anisotropic Gassmann model. The strong increase in dispersion with increasing water saturation is attributed to local flow involving adsorbed (bound) water, but a quantitative description is yet to be provided.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amir H. Haghi ◽  
Richard Chalaturnyk ◽  
Martin J. Blunt ◽  
Kevin Hodder ◽  
Sebastian Geiger

AbstractOver the last century, the state of stress in the earth’s upper crust has undergone rapid changes because of human activities associated with fluid withdrawal and injection in subsurface formations. The stress dependency of multiphase flow mechanisms in earth materials is a substantial challenge to understand, quantify, and model for many applications in groundwater hydrology, applied geophysics, CO2 subsurface storage, and the wider geoenergy field (e.g., geothermal energy, hydrogen storage, hydrocarbon recovery). Here, we conduct core-scale experiments using N2/water phases to study primary drainage followed by spontaneous imbibition in a carbonate specimen under increasing isotropic effective stress and isothermal conditions. Using X-ray computed micro-tomography images of the unconfined specimen, we introduce a novel coupling approach to reconstruct pore-deformation and simulate multiphase flow inside the deformed pore-space followed by a semi-analytical calculation of spontaneous imbibition. We show that the irreducible water saturation increases while the normalized volume of spontaneously imbibed water into the specimen decreases (46–25%) in response to an increase in effective stress (0–30 MPa), leading to higher residual gas saturations. Furthermore, the imbibition rate decreases with effective stress, which is also predicted by a numerical model, due to a decrease in water relative permeability as the pore-space becomes more confined and tortuous. This fundamental study provides new insights into the physics of multiphase fluid transport, CO2 storage capacity, and recovery of subsurface resources incorporating the impact of poromechanics.


1971 ◽  
Vol 11 (01) ◽  
pp. 13-22 ◽  
Author(s):  
Ali A. Sinnokrot ◽  
H.J. Ramey ◽  
S.S. Marsden

Abstract A number of recent studies of drainage relative permeability ratio by dynamic displacement have permeability ratio by dynamic displacement have indicated temperature sensitivity. Poston et al. found that the irreducible water saturation appeared to increase significantly with temperature-level increase and speculated that capillary pressure saturation data would also change to show this effect. Although there have been capillary pressure-saturation studies which show important pressure-saturation studies which show important differences between laboratory and reservoir conditions (presumably higher temperatures), the effects have usually been attributed to adsorption and desorption of polar components from the liquid phases. There appears to be no systematic studies phases. There appears to be no systematic studies of the effect of temperature level upon capillary pressure. pressure. Equipment was constructed to permit measuring capillary pressures for simple systems at temperatures ranging from room temperature to about 350 deg. F. Drainage and imbibition capillary pressure curves were measured for three consolidated pressure curves were measured for three consolidated sandstones and one limestone sample, at either three or four temperature levels form 70 deg to 325 deg F. Fluid used were a filtered white oil and distilled water. Results for the sandstone samples were similar. The practical irreducible water saturation increased significantly as temperature was raised from 70 deg F to the maximum temperature studies - about 325 deg F. Surprisingly, the hysteresis between drainage and imbibition cycles decreased as temperature increased and was nearly absent at 300 deg F. Results indicated that the sandstone samples became markedly more water-wet as temperature level increased. Results for the limestone sample were quite different. All capillary pressure-saturation curves for the various isotherms were found to lie within the envelope of the room-temperature drainage and imbibition curves. The main objective of this study was to determine whether the supposition of Poston et al. was correct. Results are in agreement with the previous dynamic displacement work. Introduction In 1967, Poston et al reported displacement experiments on unconsolidated sands at elevated temperatures and found that the irreducible water saturation increased with temperature increase. The oil viscosity appeared to have had no real effect on their results. Although less conclusive, practical residual oil saturations (to a producing practical residual oil saturations (to a producing water-oil ratio of 100) appeared to decrease with temperature increase. The results also indicated important increases in both oil and water relative permeabilities as temperature increased. This led permeabilities as temperature increased. This led Poston et al. to suggest that temperature affects. Poston et al. to suggest that temperature affects. the sand wettability. Sessile-drop contact angle measurements indicated that the water-oil-glass contact angle decreased with temperature increase. The results of Poston et al. regarding an increase in irreducible water saturation with temperature increase and the nondependence of this finding on the viscosity ratio deserve more attention. it is a well established concept in the literature that increasing water wetness of sands is reflected in an increase in the irreducible water saturation and an increase in oil recovery efficiency. The effect on a capillary pressure-saturation curve would be to cause a shift toward increasing irreducible wetting-phase saturation. if this is the case, then the studies of McNiel and Moss and Willman et al. should give partial credit for the added oil recovery efficiency involved in hot water flooding to the effect of temperature level upon wettability. In view of the potential importance of hot fluid injection for improving oil recovery and the lack of an adequate description of the flow process and thermodynamics involved, it was decided to study the speculation of Poston et al. that capillary pressure-saturation curves should be temperature pressure-saturation curves should be temperature dependent. This study concerns the effect of temperature level upon capillary pressure-saturation relationships for consolidated porous media. SPEJ p. 13


Sign in / Sign up

Export Citation Format

Share Document